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RESUMEN

Las propiedades que las ondas solitarias comparten 
con las partículas han contribuido significativamente 
al desarrollo de nuevas teorías y avances 
tecnológicos en diferentes áreas del conocimiento. 
En este sentido, el estudio de la estabilidad orbital de 
las ondas solitarias es clave en la dinámica de las 
ondas solitarias. Aunque la definición de estabilidad 
orbital es relativamente simple, el análisis matemático 
necesario para verificarla es bastante complejo. Sin 
embargo, la teoría de Grillakis, Shatah y Strauss 
nos proporciona un criterio muy útil para verificar 
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la estabilidad orbital. En este trabajo, presentamos 
su teoría y la aplicamos para analizar la estabilidad 
orbital de la ecuación generalizada de Korteweg-
de Vries, la ecuación del fluido compresible y la 
ecuación unidimensional de Benney-Luke. Para las 
dos primeras ecuaciones, el criterio garantizaba la 
estabilidad orbital de las ondas solitarias. Para la 
tercera, se garantizaba sólo para ciertos rangos de 
sus parámetros

ABSTRACT 

Properties that solitary waves share with particles 
have contributed significantly to the development of 
new theories and technological advances in different 
areas of knowledge. In this sense, the study of orbital 
stability of solitary waves is key in solitary wave 
dynamics. Although the definition of orbital stability is 
relatively simple, the mathematical analysis required 
to verify it is quite complex. However, the theory of 
Grillakis, Shatah and Strauss provides us with a very 
useful criterion to verify orbital stability. In this work, we 
present their theory and apply it to analyse the orbital 
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stability of Generalized Korteweg-de Vries equation, 
Compressible fluid equation, and one-dimensional 
Benney-Luke equation. For the first two equations, 
the criterion guaranteed the orbital stability of the 
solitary waves. For the third one, it was guaranteed 
only for certain ranges of its parameters.

1.  THE INTRODUCTION 

In 1834, John Scott-Russell discovered solitary 
waves that propagate without deforming. These 
waves called solitons revolutionized particle 
physics because they show properties of 
particles, which led to very important advances 
in several areas of knowledge such as quantum 
mechanics, astronomy, optics, among others. 
Although mathematical models that describe 
the dynamics of solitons in different branches of 
science have been known since the 19th century, 
these could only be analyzed theoretically . 
With the invention of the computer in the mid-
20th century, the situation changed radically. 
Processes could be simulated and contrasted 
with the results obtained from the mathematical 
analysis and empirical data. 
A fundamental property of solitons is orbital 
stability, a solution    is orbitally stable under a 
metric K , if given          there exists             such 
that for any other solution    satisfying 

Although the concept is relatively straightforward, 
checking orbital stability is a complex process 
that is generally performed numerically. 
However, in 1987 M. Grillakis, J. Shatah and 
W. Strauss in [1,2] established a result (GSS 
theory) that characterizes the stability and orbital 
instability of solitary waves for problems framed 
as abstract Hamiltonian systems. This class of 
problems has special solutions of the form 
                                                                is denominated 
speed-wave. Due to the translation invariance of 
the motion equation, it is possible to show the 
existence of a quantity Q that is conserved with 
respect to time [1,2]. This quantity is fundamental 

in the study of the stability of solitary waves since 
these are characterized as stationary points of 
the functional of energy
The criterion of Grillakis, Shatah and Strauss in 
[1] for orbital stability of a solitary wave requires 
the second variation of 
Once all the hypotheses of the criteria have been 
verified we conclude that the solitary wave 
is orbitally stable if and only if the function d(.)
defined as                         is strictly convex.
In this work, we analyze the orbital stability of 
three mathematical models by means of the 
GSS criterion. The paper is organized as follow, 
in second section is presented the Grillakis, 
Shatah and Strauss criterion, in the third section 
we applied the GSS theory to analyze the orbital 
stability of the Generalized Korteweg-de Vries 
equation, the one-dimensional Benney-Luke 
equation and the Compressible fluid equation, in 
fourth and fifth sections we present discussion 
and conclusion, respectively. 

2.  GRILLAKIS-SHATAH-STRAUSS 
CRITERION

In 1987, Manoussos Grillakis, Jalal Shatah and 
Walter Strauss developed their theory of stability 
of traveling waves solutions for the nonlinear 
evolution equations in the Hamiltonian forms
     (1)
which are locally well-posed in a Hilbert space  
X with inner product (,) ; here E  is a functional 
(“energy”) and J is a skew-symmetric linear 
operator. Let be a one-parameter group of 
unitary operators on X. If  X* is its dual, there is a 
natural isomorphism                 defined by  
                                        denotes the pairing 
between X and X*. 
Let  be a one-parameter group of unitary 
operators on  X  such that E is invariant under  T 
and j “commutes” with T. Let                   a bounded
a bounded linear operator such that  B*=B
and the operator jB is an extension of  T´ (0).
Let the functional                       defined by 

    (2)

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 

 
 
 
 
 
 

a metric 𝜅𝜅, if given 𝜖𝜖 > 0, there exists 𝛿𝛿 > 0 such that for any other solution 𝜑𝜑 satisfying 

𝜅𝜅(𝜙𝜙(0), 𝜑𝜑(0)) < 𝛿𝛿, implies 𝜅𝜅(𝜙𝜙(𝑡𝑡), 𝜑𝜑(𝑡𝑡)) < 𝛿𝛿 for 𝑡𝑡 > 0.  
the form 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡), where c > 0 is  

energy ℑ = 𝐸𝐸 + 𝑐𝑐𝑐𝑐. The criterion of Grillakis,  

variation of ℑ in 𝜙𝜙𝑐𝑐.  

wave 𝜙𝜙𝑐𝑐 is orbitally stable if and only if the function 𝑑𝑑(∙) defined as 𝑑𝑑(𝑐𝑐) = ℑ(𝜙𝜙𝑐𝑐) is strictly convex. 

1.  Grillakis- 
𝑢𝑢𝑡𝑡 = 𝐽𝐽𝐸𝐸′(𝑢𝑢(𝑡𝑡)),     (1) 

isomorphism 𝐼𝐼:̅ 𝑋𝑋 → 𝑋𝑋∗ defined by 〈𝐼𝐼�̅�𝑢, 𝑣𝑣〉 = (𝑢𝑢, 𝑣𝑣) where 〈, 〉 with 𝑇𝑇. Let 𝐵𝐵: 𝑋𝑋 → 𝑋𝑋∗ a bounded linear 

operator such that 𝐵𝐵∗ = 𝐵𝐵 and the operator 𝐽𝐽𝐵𝐵 is an extension of 𝑇𝑇′(0). Let the functional 𝑐𝑐: 𝑋𝑋 → ℝ 

defined by  

𝑐𝑐(𝑢𝑢) = 1
2

〈𝐵𝐵𝑢𝑢, 𝑢𝑢〉.    (2) 

• ) For each 𝑢𝑢0 ∈ 𝑋𝑋 exists 𝑡𝑡0 > 0 depending only on 𝜇𝜇, where ‖𝑢𝑢0‖ < 𝜇𝜇   

• 𝑢𝑢 of equation (1) in the interval 𝐼𝐼 = [0, 𝑡𝑡0) such that  

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b. 𝐸𝐸(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸(𝑢𝑢0), 𝑐𝑐(𝑢𝑢(𝑡𝑡)) = 𝑐𝑐(𝑢𝑢0) for 𝑡𝑡 ∊ 𝐼𝐼. 
• Assumption 2 

•  real 𝜔𝜔1 < 𝜔𝜔2 and a mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 which is 𝐶𝐶1  such that 

for each  𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2) 

a. 𝐸𝐸′(𝜙𝜙𝑐𝑐) = 𝑐𝑐𝐸𝐸′(𝜙𝜙𝑐𝑐) 

b. 𝜙𝜙𝑐𝑐 ∈ 𝐷𝐷(𝑇𝑇′(0)3) ∩ 𝐷𝐷(𝐽𝐽𝐼𝐼𝑇𝑇′(0)2), 
c. 𝑇𝑇′(0)𝜙𝜙𝑐𝑐 ≠ 0. 

• Assumption 3 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), 𝐻𝐻𝜔𝜔  

• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 

𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑝𝑝𝑢𝑢𝑥𝑥 − 𝑀𝑀𝑢𝑢𝑥𝑥 = 0,    (3) 

where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  

𝑎𝑎1|𝜉𝜉|𝛽𝛽1 ≤ 𝛼𝛼(𝜉𝜉) ≤ 𝑎𝑎2(1 + |𝜉𝜉|)𝛽𝛽2,      for     𝜉𝜉 ∈ ℝ  (4) 



O N  T H E  O R B I T A L  S T A B I L I T Y  O F  T R A V E L I N G  W A V E S  T H A T  B E H A V E  S U C H  A S  P A R T I C L E S

 R E V I S T A  B O L E T Í N  R E D I P E  1 0  ( 2 ) :  1 5 8 - 1 6 4  -  F E B R E R O  2 0 2 1  -  I S S N  2 2 5 6 - 1 5 3 6

 ·  1 6 0  ·

                             has exactly one negative 
simple eigenvalue and has its kernel spanned 
by                 and the rest of its spectrum is 
positive and bounded away from zero

Considering the following assumptions 
•	 Assumption 1 (Existence of solutions) For 
each                                    depending only on                               

and there exists a solution u of equation (1) in 
the interval                  such that 
a.   
b. 

•	 Assumption 2 (Existence of Bound 
States) There exist real                and a 
mapping                from the open interval       
into X which is C1 such that for each

•	 Assumption 3 (Spectral structure  For each

The main results of Grillakis, Shatah and Strauss 
is summarized in the following theorem 
Theorem 1: Given Assumptions 1, 2 and 3, let . 
                    Then the          orbit is stable if and 
only if the function  d (.) is convex in a 
neighborhood of                              .

3.  APPLICATION OF MAIN RESULT
In this section we will illustrate examples how 
this theory works in the case of solitary wave 
solutions and periodic traveling waves. A wide 
variety of applications of this theory have been 
obtained in the last twenty years to different 
equations or systems which appear in the 
physical description of phenomena, for example, 
in the dynamic of fluid, internal waves, nonlinear 
interactions in shallow-water ocean surface 
waves, optical, hydro dynamical systems and 
plasma physics [3].
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• spanned by 𝑇𝑇′(0)𝜙𝜙𝑐𝑐  

Theorem 1: Given Assumptions 1, 2 and 3, let 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2). Then the 𝜙𝜙𝑐𝑐 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡 is stable if and only 

if the function 𝑑𝑑(∙) is convex in a neighborhood of 𝜔𝜔, namely, 𝑑𝑑′′(𝑐𝑐) > 0. 

2.  Applica 

2.1.  Stability of Solitary wave solutions 

Angulo J. in [3] study the stability of solitary wave solutions associated to the following class of equations 
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where 𝑢𝑢 = 𝑢𝑢(𝑥𝑥, 𝑡𝑡) is real valued, 𝑥𝑥, 𝑡𝑡 ∈ ℝ, 𝑝𝑝 ∈ ℕ, 𝑝𝑝 ≥ 1  and 𝑀𝑀 is a linear operator defined as a Fourier 

multiplier operator by 𝑀𝑀𝑢𝑢⏞ (𝜉𝜉) = 𝛼𝛼(𝜉𝜉) 𝑢𝑢⏞ (𝜉𝜉), where the symbol 𝛼𝛼(𝜉𝜉) is a measurable even function on ℝ 

and satisfies  
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where the parameters defined in equation (4) satisfy 𝑎𝑎1, 𝑎𝑎2 > 0 and  𝛽𝛽1 ≥ 𝛽𝛽1 ≥ 1. By considering 𝑐𝑐 >
𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 

(2) satisfies the equation 

𝑀𝑀𝜙𝜙𝑐𝑐 + 𝑐𝑐𝜙𝜙𝑐𝑐 − 1
𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 
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• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 
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eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 
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𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
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𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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(2) satisfies the equation 
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where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 
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where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  
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−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 
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eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 

 
 
 
 
 
 

where the parameters defined in equation (4) satisfy 𝑎𝑎1, 𝑎𝑎2 > 0 and  𝛽𝛽1 ≥ 𝛽𝛽1 ≥ 1. By considering 𝑐𝑐 >
𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 

(2) satisfies the equation 

𝑀𝑀𝜙𝜙𝑐𝑐 + 𝑐𝑐𝜙𝜙𝑐𝑐 − 1
𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 

 
 
 
 
 
 

where the parameters defined in equation (4) satisfy 𝑎𝑎1, 𝑎𝑎2 > 0 and  𝛽𝛽1 ≥ 𝛽𝛽1 ≥ 1. By considering 𝑐𝑐 >
𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 

(2) satisfies the equation 

𝑀𝑀𝜙𝜙𝑐𝑐 + 𝑐𝑐𝜙𝜙𝑐𝑐 − 1
𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 
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Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 
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where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 
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ℝ defined by  
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where 𝐸𝐸′
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For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 
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in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 

Assumption 2 (Existence of solitary wave 
solutions) There exist real                 such that
a.       The mapping             from the open 
interval                into

b. 

Assumption 3 (Spectral structure) For each 
                     the self-adjunt, closed, unbounded 
linear                      defined on the dense 
subspace of       

 
 
 
 
 
 

where the parameters defined in equation (4) satisfy 𝑎𝑎1, 𝑎𝑎2 > 0 and  𝛽𝛽1 ≥ 𝛽𝛽1 ≥ 1. By considering 𝑐𝑐 >
𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 

(2) satisfies the equation 

𝑀𝑀𝜙𝜙𝑐𝑐 + 𝑐𝑐𝜙𝜙𝑐𝑐 − 1
𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 
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(2) satisfies the equation 

𝑀𝑀𝜙𝜙𝑐𝑐 + 𝑐𝑐𝜙𝜙𝑐𝑐 − 1
𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
2 𝑢𝑢𝑀𝑀𝑢𝑢 − 1

(𝑝𝑝+2)(𝑝𝑝+1) 𝑢𝑢𝑝𝑝+2) 𝑑𝑑𝑥𝑥,∞
−∞         (3) 

He writes equation (2) in the Hamiltonian form 

𝑢𝑢𝑡𝑡(𝑡𝑡) = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝐸𝐸′

𝑀𝑀(𝑢𝑢(𝑡𝑡)),    (9) 

where 𝐸𝐸′
𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 
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𝑀𝑀 defined in equation (9) is the derivative. Let the conservation law 𝑄𝑄: 𝑋𝑋 → ℝ defined by 

𝑄𝑄(𝑢𝑢) = 1
2 ∫ 𝑢𝑢2𝑑𝑑𝑥𝑥.∞

−∞     (10) 

For equation (5), Pava verified that the assumptions of Grillakis et al. are given by 

• Assumption 1 (Existence of solutions) There is a Banach space (𝑌𝑌, ‖∙‖𝑌𝑌)  continuously embedding 

in 𝑋𝑋 such that for each 𝑢𝑢0 ∈ 𝑌𝑌 there exist 𝑇𝑇 = 𝑇𝑇(‖𝑢𝑢0‖𝑌𝑌) and the unique solution 𝑢𝑢 ∈ 𝐶𝐶([−𝑇𝑇, 𝑇𝑇], 𝑌𝑌) 

of (2) satisfying 

a. 𝑢𝑢(0) = 𝑢𝑢0 and  

b.  𝐸𝐸𝑀𝑀(𝑢𝑢(𝑡𝑡)) = 𝐸𝐸𝑀𝑀(𝑢𝑢0), 𝑄𝑄(𝑢𝑢(𝑡𝑡)) = 𝑄𝑄(𝑢𝑢0) for 𝑡𝑡 ∊ [0, 𝑇𝑇]. 
• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
• Assumption 3 (Spectral structure) For each 𝑐𝑐 ∈ (𝜔𝜔1, 𝜔𝜔2), the self-adjunt, closed, unbounded linear 

operator ℒ𝑐𝑐, defined on the dense subspace of  𝐿𝐿2(ℝ) as 

ℒ𝑐𝑐 ≡ 𝑀𝑀 + 𝑐𝑐 − 𝜙𝜙𝑐𝑐
𝑝𝑝.    (11) 

ℒ𝑐𝑐  

eigenfunction 𝜙𝜙′𝑐𝑐, and the remainder of the spectrum of ℒ𝑐𝑐 is positive and bounded away from zero. 

 
 
 
 
 
 

where the parameters defined in equation (4) satisfy 𝑎𝑎1, 𝑎𝑎2 > 0 and  𝛽𝛽1 ≥ 𝛽𝛽1 ≥ 1. By considering 𝑐𝑐 >
𝑖𝑖𝑖𝑖𝑖𝑖𝜉𝜉∈ℝ 𝛼𝛼(𝜉𝜉) he verifies 𝑀𝑀 + 𝑐𝑐  is a positive operator. The solitary wave solution 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝜙𝜙𝑐𝑐(𝑥𝑥 − 𝑐𝑐𝑡𝑡) of 

(2) satisfies the equation 

𝑀𝑀𝜙𝜙𝑐𝑐 + 𝑐𝑐𝜙𝜙𝑐𝑐 − 1
𝑝𝑝+1 𝜙𝜙𝑐𝑐

𝑝𝑝+1 = 0,   (5) 

In this case, the linear space 𝑋𝑋 is defined by  

                                 𝑋𝑋 = {𝑖𝑖 ∈ 𝐿𝐿2(ℝ): ‖𝑖𝑖‖𝑋𝑋 = (∫ |1 + 𝛼𝛼(𝜉𝜉)||𝑖𝑖(𝜉𝜉)|2𝑑𝑑𝜉𝜉∞
−∞ )

1
2 < ∞}.                                   (6) 

Its dual 𝑋𝑋∗ is the space of all tempered distributions Φ whose Fourier transform Φ̂ is given by a 

measurable function for which  

‖Φ‖𝑋𝑋∗ = (∫ |Φ̂(𝜉𝜉)|2

1+𝛼𝛼(𝜉𝜉) 𝑑𝑑𝜉𝜉∞
−∞ )

1
2

< ∞,   (7) 

where ‖. ‖𝑋𝑋∗ defined in equation (7) is the norm. The pairing between 𝑋𝑋 and 𝑋𝑋∗ is determined for 𝑖𝑖 ∈ 𝑋𝑋 

and Φ ∈ 𝑋𝑋∗ as Φ(𝑖𝑖), and it will be written as (Φ, 𝑖𝑖). If Φ is given by an 𝐿𝐿2(ℝ) function 𝜑𝜑, then (𝜑𝜑, 𝑖𝑖) =
〈𝜑𝜑, 𝑖𝑖〉 is the usual  𝐿𝐿2(ℝ) inner product. On the other hand, from equation (3) on the symbol 𝛼𝛼 of the 

operator 𝑀𝑀, the space  𝑋𝑋 is continuously embedded in 𝐻𝐻1/2(ℝ).  By using the conservation law 𝐸𝐸𝑀𝑀: 𝑋𝑋 →
ℝ defined by  

𝐸𝐸𝑀𝑀(𝑢𝑢) = ∫ (1
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• Assumption 2 (Existence of solitary wave solutions) There exist real 𝜔𝜔1 < 𝜔𝜔2 such that  

a. The mapping 𝑐𝑐 → 𝜙𝜙𝑐𝑐  from the open interval (𝜔𝜔1, 𝜔𝜔2) into 𝑋𝑋 ⊆ 𝐻𝐻𝛽𝛽1 2⁄ (ℝ) which is 𝐶𝐶1. 

b. 𝐸𝐸′𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄′(𝜙𝜙𝑐𝑐) = 0  (𝑖𝑖. 𝑒𝑒.  𝜙𝜙𝑐𝑐 is a critical point of the functional 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑄𝑄(𝜙𝜙𝑐𝑐)). 
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In this case, the function 𝑑𝑑(∙)  is defined by  

𝑑𝑑(𝑐𝑐) = 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑐𝑐(𝜙𝜙𝑐𝑐),    (12) 

where 𝐸𝐸𝑀𝑀 and 𝑐𝑐 are defined in equations (8) and (10), respectively. From Assumption 2 it follow that 

𝑑𝑑′(𝑐𝑐) = 𝑐𝑐𝑐𝑐(𝜙𝜙𝑐𝑐), so the sufficient condition for obtaining the orbital stability given by Theorem 1 is 

reduced to  

𝑑𝑑′′(𝑐𝑐) = 1
2

𝑑𝑑
𝑑𝑑𝑐𝑐 ∫ 𝜙𝜙𝑐𝑐

2(𝜉𝜉)∞
−∞ 𝑑𝑑𝜉𝜉 > 0.   (13) 

The equations (12) and (13) characterize the convexity of the functional 𝑑𝑑. 

1.1.  Stabili 

Quintero J R in [4]  

Φ𝑡𝑡𝑡𝑡 − Φ𝑥𝑥𝑥𝑥 + 𝑎𝑎Φ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑏𝑏Φ𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + Φ𝑡𝑡Φ𝑥𝑥𝑥𝑥 + 2Φ𝑥𝑥Φ𝑥𝑥𝑡𝑡 = 0, (14) 

 

h that 𝑎𝑎 − 𝑏𝑏 = 𝜎𝜎 − 1/3 (𝜎𝜎 is named the Bond number). He studied the stability of traveling waves of 

lowest energy in the energy norm or simply solitary waves for equation (6) of the form Φ(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥 −
𝑐𝑐𝑡𝑡), where 𝑐𝑐 > 0 satisfies 𝑐𝑐2 < 𝑚𝑚𝑚𝑚𝑚𝑚(1, 𝑎𝑎/𝑏𝑏). By substituting Φ in (14), we verifies the traveling wave 

profile u should satisfy the equation 

(𝑐𝑐1 − 1)𝑢𝑢𝑥𝑥𝑥𝑥 + (𝑎𝑎 − 𝑏𝑏𝑐𝑐2)𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 3𝑐𝑐𝑢𝑢𝑥𝑥𝑥𝑥𝑢𝑢𝑥𝑥 = 0.        (15) 

 

Bye when 0 < 𝑐𝑐 < 1 < 𝑎𝑎/𝑏𝑏, which corresponds to the case Bond number 𝜎𝜎 > 1/3 and are orbitally 

unstable when 0 < 𝑐𝑐 < 𝑎𝑎/𝑏𝑏 < 1, which corresponds to the case Bond number 𝜎𝜎 < 1/3. Ibarguen-

Mondragon E in [5] study the stability of solitons associated Benney–Luke equation (6) for the 

complementary case 𝑐𝑐 > 0 satisfies 𝑐𝑐2 > 𝑚𝑚𝑚𝑚𝑚𝑚(1, 𝑎𝑎/𝑏𝑏). an arbitrary fundamental period 𝑇𝑇0 by using 

Jacobian elliptic functions Stability (orbital) of these solutions by periodic disturbances with period 𝑇𝑇0 will 

be a consequence of the general stability criteria given by M. Grillakis, J. Shatah, and W. Strauss. 

Quintero and Muñoz in [7] study the stability of solitons associated to generalized Benney–Luke 

equation 

Φ𝑡𝑡𝑡𝑡 − Φ𝑥𝑥𝑥𝑥 + 𝑎𝑎Φ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑏𝑏Φ𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑚𝑚Φ𝑡𝑡(Φ𝑥𝑥)𝑛𝑛−1Φ𝑥𝑥𝑥𝑥 + 2(Φ𝑥𝑥)𝑛𝑛Φ𝑥𝑥𝑡𝑡 = 0. (16) 

 

1.2.  Stability  

𝑣𝑣𝑡𝑡 − 𝑢𝑢𝑥𝑥 = 0, 𝑢𝑢𝑡𝑡 − 𝑝𝑝(𝑣𝑣)𝑥𝑥 + 𝛿𝛿𝑣𝑣𝑥𝑥𝑥𝑥𝑥𝑥 = 0,  (17) 

 

where 𝑥𝑥 is the Lagrangian space variable, 𝑣𝑣 is specific volume, 𝑢𝑢 is velocity, 𝛿𝛿 > 0 is the capillarity 

coefficient, and 𝑝𝑝(𝑣𝑣) is 
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wave, he found the Hamiltonian structure but the 
verification that some quantities are conserved 
with respect to time has turned out to be a 
difficult numerical calculation. He showed that 
the criterion of stability and orbital instability 
of M. Grillakis J Shatah and W. Strauss is not 
applicable. Angulo and Quintero in [6] study the 
existence and orbital stability of cnoidal waves 
for Benney–Luke equation (6), they built periodic 
travelling-wave solutions with an arbitrary 
fundamental period T0 by using Jacobian elliptic 
functions Stability (orbital) of these solutions 
by periodic disturbances with period T0 will be 
a consequence of the general stability criteria 
given by M. Grillakis, J. Shatah, and W. Strauss. 
Quintero and Muñoz in [7] study the stability of 
solitons associated to generalized Benney–Luke 
equation

 (16)

They verified that criterion of Grillakis et al. 
result applied to (16) fails for to be applicable in 
this case. They implemented a finite difference 
numerical scheme which combines an explicit 
predictor and an implicit corrector step to 
compute solutions of the model equation.

3.3.  STABILITY SOLITARY TRAVELING 
WAVE SOLUTIONS FOR COMPRESSIBLE 
FLUID EQUATIONS

Li et al. in [8] discuss the existence of traveling 
wave solutions for the following compressible 
fluid equations with capillarity term
  

(17)

where x is the Lagrangian space variable, v is 
specific volume, u is                          is the 
capillarity coefficient, and p(v) is Van del 
Waals pressure. By applying the theory and 
method of planar dynamical system defined in 
equation (17), and obtain explicit expressions 
for all bounded traveling wave solutions by 

undetermined coefficient method, including kink 
and bell profile traveling wave solutions, as well 
as periodic wave solutions. They proved the kink 
profile solitary wave solution, both sides of which 
asymptotic values are not zero, is orbitally stable 
by the theory of Grillakis et al. stablished in the 
Theorem 1.

4.  DISCUSSION

The physical relevance of solitary traveling 
waves in the form of pulses or solitons lies in the 
large number of scenarios in which they appear, 
solitons have been discovered in all states of 
matter and in various areas of knowledge such 
as basic science and engineering. At present, 
theoretical physicists suggest that solitons play 
a determining role in superconductivity, and also 
that through them information can be stored and 
transported in super-fast computers.
However, due to the nature of physical 
phenomena, the models formulated to describe 
the dynamics of solitons are quite complex. 
From physics and mathematics, efforts have 
been joined to advance in the understanding of 
the dynamics of solitons, so criteria such as that 
of Grillakis, Shatat and Strauss have contributed 
significantly to take giant steps in technological 
advances. 
The GSS theory provides a way to use 
constrained energy as a Lyapunov function that 
allows us to analyze the stability or instability 
of solitary wave solutions. Since this type of 
functions must satisfy conservation laws, this 
makes it a great limitation for the application of 
the GSS theory. In references [10,11] we find 
other interesting applications of the GSS theory. 
As we could see in Section 3, the GSS criterion 
worked very well to verify the orbital stability of the 
solitons of the Generalized Korteweg-de Vries 
equation and the Compressible fluid equation. 
However, in the one-dimensional Benney-Luke 
equation, it worked for certain parameter ranges. 
It should be noted that although there are other 
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In this case, the function 𝑑𝑑(∙)  is defined by  

𝑑𝑑(𝑐𝑐) = 𝐸𝐸𝑀𝑀(𝜙𝜙𝑐𝑐) + 𝑐𝑐𝑐𝑐(𝜙𝜙𝑐𝑐),    (12) 

where 𝐸𝐸𝑀𝑀 and 𝑐𝑐 are defined in equations (8) and (10), respectively. From Assumption 2 it follow that 

𝑑𝑑′(𝑐𝑐) = 𝑐𝑐𝑐𝑐(𝜙𝜙𝑐𝑐), so the sufficient condition for obtaining the orbital stability given by Theorem 1 is 

reduced to  

𝑑𝑑′′(𝑐𝑐) = 1
2

𝑑𝑑
𝑑𝑑𝑐𝑐 ∫ 𝜙𝜙𝑐𝑐

2(𝜉𝜉)∞
−∞ 𝑑𝑑𝜉𝜉 > 0.   (13) 

The equations (12) and (13) characterize the convexity of the functional 𝑑𝑑. 

1.1.  Stabili 

Quintero J R in [4]  

Φ𝑡𝑡𝑡𝑡 − Φ𝑥𝑥𝑥𝑥 + 𝑎𝑎Φ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑏𝑏Φ𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + Φ𝑡𝑡Φ𝑥𝑥𝑥𝑥 + 2Φ𝑥𝑥Φ𝑥𝑥𝑡𝑡 = 0, (14) 

 

h that 𝑎𝑎 − 𝑏𝑏 = 𝜎𝜎 − 1/3 (𝜎𝜎 is named the Bond number). He studied the stability of traveling waves of 

lowest energy in the energy norm or simply solitary waves for equation (6) of the form Φ(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥 −
𝑐𝑐𝑡𝑡), where 𝑐𝑐 > 0 satisfies 𝑐𝑐2 < 𝑚𝑚𝑚𝑚𝑚𝑚(1, 𝑎𝑎/𝑏𝑏). By substituting Φ in (14), we verifies the traveling wave 

profile u should satisfy the equation 

(𝑐𝑐1 − 1)𝑢𝑢𝑥𝑥𝑥𝑥 + (𝑎𝑎 − 𝑏𝑏𝑐𝑐2)𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 3𝑐𝑐𝑢𝑢𝑥𝑥𝑥𝑥𝑢𝑢𝑥𝑥 = 0.        (15) 

 

Bye when 0 < 𝑐𝑐 < 1 < 𝑎𝑎/𝑏𝑏, which corresponds to the case Bond number 𝜎𝜎 > 1/3 and are orbitally 

unstable when 0 < 𝑐𝑐 < 𝑎𝑎/𝑏𝑏 < 1, which corresponds to the case Bond number 𝜎𝜎 < 1/3. Ibarguen-

Mondragon E in [5] study the stability of solitons associated Benney–Luke equation (6) for the 

complementary case 𝑐𝑐 > 0 satisfies 𝑐𝑐2 > 𝑚𝑚𝑚𝑚𝑚𝑚(1, 𝑎𝑎/𝑏𝑏). an arbitrary fundamental period 𝑇𝑇0 by using 

Jacobian elliptic functions Stability (orbital) of these solutions by periodic disturbances with period 𝑇𝑇0 will 

be a consequence of the general stability criteria given by M. Grillakis, J. Shatah, and W. Strauss. 

Quintero and Muñoz in [7] study the stability of solitons associated to generalized Benney–Luke 

equation 

Φ𝑡𝑡𝑡𝑡 − Φ𝑥𝑥𝑥𝑥 + 𝑎𝑎Φ𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 − 𝑏𝑏Φ𝑥𝑥𝑥𝑥𝑡𝑡𝑡𝑡 + 𝑚𝑚Φ𝑡𝑡(Φ𝑥𝑥)𝑛𝑛−1Φ𝑥𝑥𝑥𝑥 + 2(Φ𝑥𝑥)𝑛𝑛Φ𝑥𝑥𝑡𝑡 = 0. (16) 

 

1.2.  Stability  

𝑣𝑣𝑡𝑡 − 𝑢𝑢𝑥𝑥 = 0, 𝑢𝑢𝑡𝑡 − 𝑝𝑝(𝑣𝑣)𝑥𝑥 + 𝛿𝛿𝑣𝑣𝑥𝑥𝑥𝑥𝑥𝑥 = 0,  (17) 

 

where 𝑥𝑥 is the Lagrangian space variable, 𝑣𝑣 is specific volume, 𝑢𝑢 is velocity, 𝛿𝛿 > 0 is the capillarity 

coefficient, and 𝑝𝑝(𝑣𝑣) is 



O N  T H E  O R B I T A L  S T A B I L I T Y  O F  T R A V E L I N G  W A V E S  T H A T  B E H A V E  S U C H  A S  P A R T I C L E S

 R E V I S T A  B O L E T Í N  R E D I P E  1 0  ( 2 ) :  1 5 8 - 1 6 4  -  F E B R E R O  2 0 2 1  -  I S S N  2 2 5 6 - 1 5 3 6

 ·  1 6 3  ·

methods to analyze orbital stability, the GSS 
Criterion is the most used to date, and the one 
that encompasses a broader range of differential 
equations [12]. The purpose of our work was 
focused on highlighting the importance of orbital 
stability in the dynamics of solitons and the 
usefulness of the Criterion of Grillakis, Shatah 
and Strauss in this process.

5.  CONCLUSION

The dynamics of solitons still present many 
open questions. However, the properties that 
have been tested have contributed significantly 
to tectonological advances. Recent results on 
its role on issues such as superconductors are 
promising, however, they generate challenges 
in science that involve multidisciplinary work. In 
this sense, from mathematical physics it is vital 
that new theories about orbital stability arise or 
that existing ones such as the GSS theory are 
improved.
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