Early detection algorithm for alzheimer’s disease using autonomous learning

Main Article Content

Jorge Eduardo Aguilar Obregón
Octavio José Salcedo Parra
Juan Pablo Rodríguez Miranda

Keywords

Abstract

The current document describes the approach to a research problem that aims to generate an algorithm that allows detecting the probable appearance of Alzheimer’s disease in its first phase, using autonomous learning techniques or Machine Learning, more specifically KNN (K- nearest Neighbor) with which the best result was obtained. This development will be based on a complete information bank taken from ADNI (Alz- heimer’s Disease NeuroImaging Initiative), with all the necessary parameters to direct the inves- tigation to an algorithm that is as efficient as pos- sible, since it has biological, sociodemographic and medical history data, biological specimens, neural images, etc., and in this way the early de- tection of the aforementioned disease was con- figured. A complete guide to the process will be carried out to finally obtain the KNN algorithm whose efficiency is 99%, and then discuss the obtained results. 

Abstract 193 | PDF en inglés Downloads 81