Didactic strategy for conceptual learning of inequalities through semiotic representations

Main Article Content

Fabio Durán Salas

Keywords

Didactic strategy, Conceptual learning, Semiotic representations, Semiotic treatment and semiotic conversion

Abstract

This research proposes a didactic strategy for the conceptual learning of inequalities developed with students between 15 and 16 years of age to dynamize the interpretation, understanding, and solution of situations both in mathematical contexts and in daily contexts, having as methodological reference the conceptual representations, treatments, and semiotic conversions as the three phases of the conceptual development of inequalities. The strategy was developed in classroom sessions in which multiple representations of inequalities were worked on to solve inequalities, determine the domain and codomain of logarithmic functions, rational functions, irrational functions, and semantic conversions of a lipid profile.

Abstract 465 | PDF (Spanish) Downloads 702

References

Almog, N., & Ilany, B. S. (2012). Absolute value inequalities: High school students’ solutions and misconceptions. Educational Studies in Mathematics, 81(3), 347–364. https:// doi.org/10.1007/s10649-012-9404-z

Balomenou, A., Komis, V., & Zacharos, K. (2017). Handling Signs in Inequalities by Exploiting Multiple Dynamic Representations – the Case of ALNuSet. Digital Experiences in Mathematics Education, 3(1), 39–69. https://doi.org/10.1007/s40751-017-0029- 9

Blanco, L. J., & Garrote, M. (2007). Difficulties in learning inequalities in students of the first year of pre-university education in Spain. Eurasia Journal of Mathematics, Science and Technology Education, 3(3), 221–229. https://doi.org/10.12973/ejmste/75401

D’Amore, B. (2003). The noetic in mathematics. Scientia Pedagogica Experimentalis, XXXIX, 75–82. http://www.dm.unibo.it/ rsddm/it/articoli/damore/462 The noetic in math.pdf

D’Amore, B. (2004). Conceptualización, registros de representaciones semióticas y noética. Uno. Revista de Didáctica de Las Matemáticas., 35, 90–106.

D’amore, B., Fandiño, M., & Lori, M. (2013). La semiótica en la didactica de la matemática. 181.

D’Amore, B., Fandiño, M., Marazzani, I., & Sbaragli, S. (2010). La Didáctica y la Dificultad En Matemática (Primera Ed). Editorial Magisterio.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https:// doi.org/10.1007/s10649-006-0400-z

Duval, R. (2017a). Semiosis Y Pensamiento Humano (Segunda Ed). Editorial Universidad del Valle.

Duval, R. (2017b). Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations. Springer Nature.

Fandiño, M. (2010). Multiples aspectos del aprendizaje de la matemática: evaluar e intervenir en forma mirada y especifica. Editorial Magisterio.

Geary, D., Berch, D., Ochsendorf, R., & Mann, K. (2017). 2017-Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts (N. Levy (ed.)). Thomson Digital.

Godino, J. D. (2016). Mathematical concepts , Their meanings and Understanding. Proceedings of XX Conference of the International Group for the Psychology of Mathematics Education, 2, 417–425. https://www.ugr.es/~jgodino/articulos_ ingles/meaning_understanding.pdf

Guerrero-Ortiz, C., Mejía-Velasco, H. R., & Camacho-Machín, M. (2016). Representations of a mathematical model as a means of analysing growth phenomena. Journal of Mathematical Behavior, 42, 109–126. https://doi. org/10.1016/j.jmathb.2016.03.001

Hattikudur, S., & Alibali, M. W. (2010). Learning about the equal sign: Does comparing with inequality symbols help? Journal of Experimental Child Psychology, 107(1), 15–30. https://doi.org/10.1016/j. jecp.2010.03.004

Hernandez, R., Fernandez, C., & Baptista, M. (2010). Metodología de la investigación (Quinta Edi). McGraw Hill.

Iori, M. (2016). Objects , signs , and representations in the semio-cognitive analysis of the processes involved in teaching and learning mathematics : A Duvalian perspective. Educational Studies in Mathematics. https://doi.org/10.1007/ s10649-016-9726-3

Sangwin, C. J. (2015). Inequalities, assessment and computer algebra. International Journal of Mathematical Education in Science and Technology, 46(1), 76–93. https://doi.org/1 0.1080/0020739X.2014.941424

Sierpinska, A., Bobos, G., & Pruncut, A. (2011). Teaching absolute value inequalities to mature students. Educational Studies in Mathematics, 78(3), 275–305. https://doi. org/10.1007/s10649-011-9325-2

Tsamir, P., & Almog, N. (2001). Students’ strategies and difficulties: The case of algebraic inequalities. International Journal of Mathematical Education in Science and Technology, 32(4), 513–524. https://doi. org/10.1080/00207390110038277

Tsamir, Pessia, & Bazzini, L. (2004). Consistencies and inconsistencies in students’ solutions to algebraic ‘singlevalue’ inequalities. International Journal of Mathematical Education in Science and Technology, 35(6), 793–812. https://doi.or g/10.1080/00207390412331271357

Vergnaud, G. (1998). A comprehensive theory of representation for mathematics education. Journal of Mathematical Behavior, 17(2), 167–181.