Study of conics in some metrics: proposal for the development of spatial thinking
Main Article Content
Keywords
Conics, Metrics, Geometric Place, Representation Records, Spatial Thinking
Abstract
Conics are essentially worked from their representation in the Usual metric (Euclidean) leaving aside the different representations that can be given when using other forms of measurement; the main objective of this article was to synthesize the most important results of the research work of Antonio and Garzón (2017) on the geometric and analytical study of conics when they are approached from other metrics (taxi, maximum and discrete) and to think on the way in which this subject is being taught. The Ministry of National Education of Colombia has a concern for the detriment of spatial thinking and there is a need to rescue the intuitive and crtitical analyses types in students. The research was carried out under the theoretical-documentary approach where some theoretical and didactic proposals of the conics from the taxi metrics were taken as the main reference; working with conics with different metrics allows exploring new ways of measuring and promotes the development of geometric-spatial thinking throughout different situations that confrontates the student's knowledge. Furthermore, from the theory of representation registers it turns out to be a favorable strategy because "understanding does not mean making a leap from the content of a representation to the purely mathematical concept represented but in relating diverse contents of representation of the same concept" (Duval, 2006, p. 158). On many occasions, a conic is associated with a specific graphic representation. In this research, new algebraic and geometric representations of conics were achieved when the way of measuring is changed, and with this we better understand the definition of each conic as a geometric place, making it clear that there are several ways to approach conics in a school teaching process that favour the development of spatial thinking.
References
Bonilla, B., González, P., & Chavarro, S. (2014). Las cónicas en la geometría del taxista: una propuesta didáctica desde la teoría de los modos de pensamiento. Acta Latinoamericana de Matemática Educativa, Vol. 27, 666-673
Bonilla, D (2012). La Elipse desde la perspectiva de la Teoría de los Modos de Pensamiento. (Tesis de maestría). Pontificia Universidad católica de Valparaíso, Valparaíso, Chile.
Duval, R. (2006). Un tema crucial en la educación matemática: La habilidad para cambiar el registro de representación. La Gaceta de la Real Sociedad Matemática Española, 9 (1), 143-168.
Izquierdo, C. & Ardila, P. (2013). Estudio de la métrica de manhattan. Segmentos, rectas, rayos, circunferencias y algunos lugares geométricos en la geometría del taxista. (Tesis de Pregrado) Universidad Pedagógica Nacional, Bogotá, Colombia.
Lehmann, C. (1992). Geometría Analítica. México: LIMUSA. Lima: UNMSM.
Loiola, G., & Costa, S. (2015). As Cônicas na Geometria do Taxi. Ciência e Natura. Revista do Centro de Ciências Naturais e Exatas - UFSM, p.179–191.
Ministerio de Educación Nacional, (1998). Matemáticas: Lineamientos curriculares (Publicación ISBN/ISSN/DL N 958-691-067-9). Colombia: El ministerio.
Ministerio de Educación Nacional, (2016). Derechos básicos de aprendizaje. Matemáticas. V2: El ministerio.
Munkres, J. (2002). Topología. Madrid, España: Prentice Hall.
Valdivia, C., & Parraguez, M. (2012). Evolución cognitiva del concepto parábola como lugar geométrico: una mirada desde la teoría APOE. Acta Latinoamericana de Matemática Educativa 25. p. 593-601.
Vasco, C. E. (2006). Didáctica de las matemáticas: artículos selectos. U. Pedagógica Nacional.