The understanding of rectilinear motion through semiotic representations
Main Article Content
Keywords
Semiotic representations, rectilinear motion, representation systems, cognitive activities, teaching, learning
Abstract
The document presents a classroom experience, which is the result of a research work focused on externalizing the use of the theory of semiotic representations for the teaching and learning of rectilinear movement, in order to analyze the cognitive activities of treatment and conversion carried out by the students with the aim of achieving a better understanding of the object of study. In that sense, situations were designed and implemented creating conditions for the realization of the processes of formation, treatment and conversion between the different registers of semiotic representation, according to the theory of the representation registries. For the development of the study, the research was carried out with a qualitative approach following the research-action design with the stages of planning, action and evaluation.
As a main result, it is evident in the study and according to the results presented that students start from the previous knowledge to solve each situation posed, as well as they rely mainly on the systems of graphic and verbal representation, performing the respective treatment and conversions between semiotic registers, promoting furthermore the development of mathematical reasoning through problems solving.
References
Duval, R. (2017). Understanding the Mathematical Way of Thinking – The Registers of Semiotic Representations. Dunkerque, France. Université du Littoral Côte d’Opale.
D’ Amore, B. (2004). Conceptualización, registros de representaciones semióticas y noética: interacciones constructivistas en el aprendizaje de los conceptos matemáticos e hipótesis sobre algunos factores que inhiben la devolución. Uno. Barcelona, España. 35, 90-106
Elliott, J. (1990). La investigación-acción en educación. Ediciones Morata.
Godino, J. D. (2003). Teoría de las funciones semióticas. Un Enfoque Ontológico- Semiótico de la Cognición e Instrucción Matemática, Granada. Universidad de Granada.
Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. The roles of representation in school mathematics, 1-23.
Hernández, R., Fernández, C., y Baptista, P. (2014). Metodología de la investigación Mc Graw Hill. Interamericana Editores.
Mason J., Burton L. y Stacey K. (1988) Pensar Matemáticamente. Editorial Labor, S. A. Madrid, España.
Ministerio de Educación Nacional (MEN). (2006). Estándares Básicos de Competencias en Matemáticas. En, Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. (pp.46-95). MEN.