Characterizing variational thinking from problem resolution and the grounded theory
Main Article Content
Keywords
Variational Thinking, Problem Solving, Grounded Theory, Diophantine Linear Equations
Abstract
The purpose of the research was to contribute to the characterization of the variational thinking manifested by a group of 24 students who are training to become mathematics teachers, when they solve problems involving linear diophantine equations of the form ax+by=c. The study had a qualitative approach with a grounded theory design. The methodological strategy was composed of a parallel work between three interventions that grouped 11 didactic activities as data sources, the processes of open, axial, selective coding and data analysis always permeated by the method of constant comparison, which led to sampling and theoretical saturation. The findings show the variational way of thinking of the participants when from substitutions and combinations of integers in the equation, they establish links and relationships that lead them to formalize, generalize and prove. As a result, variational thinking was characterized as a process in problem solving, made up of the subprocesses transforming, formalizing, generalizing and proving variationally. The results imply that it is possible to continue advancing in characterizing variational thinking from different contexts and different domains.
References
Burton, L. (1984). Mathematical Thinking: The Struggle for Meaning. Journal for Research in Mathematics. Education, 15(1), 35-49. doi:10.2307/748986
Caballero, M., & Cantoral, R. (2013). Una caracterización de los elmentos del pensamiento y lenguaje variacional. En
R. Flores (Ed.), Acta latinoamericana de Matemática Educativa (págs. 1197-1205). México, DF: Comité Latinaoamaericano de Matemática Educativa.
Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal
for Research in Mathematics Education, 352-378. doi:10.2307/4149958
Castillo-Garsow, C. (2012). Continuous quantitative reasoning. En R. Mayes, R. Bonilla, L. Hatfield, & S. Belbase (Edits.), Quantitative reasoning: Current state of understanding, (Vol. 2, págs. 55- 73). Laramie: University of Wyoming.
Castillo-Garsow, C., Johnson, H., & Moore, K. (2013). Chunky and smooth images of change. For the Learning of Mathematics, 33(3), 31-37.
Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. London: Sage Publications.
Charmaz, K. (2014). Constructing grounded theory (2 ed.). Thousand Oaks, CA: Sage.
Confrey, J. (1991). The concept of exponential functions: A student’s perspective. En L. Steffe (Ed.), Epistemological Foundations of Mathematical Experience. Recent Research in Psychology (págs. 124-159). New York, NY: Springer.
Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135-164. doi:https:// doi.org/10.1007/BF01273661
Confrey, J., & Smith, E. (1995). Splitting, covariation and their role in the development of exponential function. Journal for Research in Mathematics Education, 26, 66-86. doi:10.2307/749228
Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA, USA: Sage Publications, Inc.
Corbin, J., & Strauss, A. (2017). Conceptos básicos de la investigación cualitativa: técnicas y procedimientos para desarrollar la teoría fundamentada (4 ed.). Thousand Oaks, California, United States of America: SAGE Publications.
Glaser, B. (1978). Theoretical sensitivity: Advances in the methodology of grounded theory. Mill Valley, CA: Sociology Press.
Glaser, B., & Strauss, A. (2017). Discovery of grounded theory: Strategies for qualitative research. New York, USA: Routledge.
Glasser, B., & Strauss, A. (1967). The development of grounded theory. Chicago: IL: Alden.
Mason, J., Burton, L., & Stacey, K. (2010). Thinking Mathematically (2 ed.). Harlow, UK: Pearson Education Limited.
Ministerio de Educación Nacional de Colombia. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Recuperado el 30 de 05 de 2020, de http://cms.mineducacion.gov.co/ static/cache/binaries/articles-340021_ recurso_1.pdf?binary_rand=1223
Morse, J., Bowers, B., Stern, P., Corbin, J., Charmaz, K., & Clarke, A. (2009). Developing Grounded Theory: The Second Generation. New York: Routledge. doi:https://doi. org/10.4324/9781315430577
Piaget, J. (1970). Piaget’s Theory. En P. Mussen (Ed.), Carmichael’s Manual of Child Psychology (T. G. Gellerier & J. Langer, Trad., 3 ed., Vol. 1). New York: Wiley.
Polya, G. (1945). Cómo plantear y resolver problemas. Editorial Trillas. México: Editorial Trillas.
Rolfe, G. (2006). Validity, trustworthiness and rigour: quality and the idea of qualitative research. Journal of advanced nursing, 53(3), 304-310. doi:https://doi. org/10.1111/j.1365-2648.2006.03727.x
Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1- 38. doi:10.1177/002205741619600202
Smith, E. (2008). Representational thinking as a framework for introducing functions in the elementary curriculum. En J. J. KAPUT (Ed.), Algebra in the Early Grades (págs. 133-160). New York, USA: Routledge Publishers.
Smith, E. (2017). Representational thinking as a framework for introducing functions in the elementary curriculum. En J. Kaput, D. Carraher, & M. Blanton (Edits.), Algebra in the early grades (págs. 155- 182). Routledge.
Thompson, P. (2011). Quantitative reasoning and mathematical modeling. En L. Hatfield, S. Chamberlain, & S. Belbase (Edits.), New perspectives and directions for collaborative research in mathematics education. WISDOMe Mongraphs (Vol. 1, págs. 33-57). Laramie, WY: University of Wyoming.
Thompson, P. W., & Carlson, M. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. (J. Cai , Ed.) Compendium for research in mathematics education, 421-456.
Thompson, P., & Thompson, A. (1992, Abril). Images of rate. Paper presented at the Annual Meeting of the American Educational Research Association. San Francisco. Recuperado el 17 de 06 de 2020, de http://pat-thompson.net/ PDFversions/1992Images.pdf
Thompson, P., Carlson, M., Byerley, C., & Hatfield, N. (2014). Schemes for thinking with magnitudes: A hypothesis about foundational reasoning abilities in algebra 1, 2, 3. En L. Steffe, L. Hatfield, & K. Moore (Ed.), Epistemic algebraic students: Emerging models of students’ algebraic knowing, 4, págs. 1-24.
Vasco, C. (2003). El pensamiento variacional y la modelación matemática. In Anais eletrônicos do CIAEM–Conferência Interamericana de Educação Matemática. 9, págs. 2009-2010. Blumenau: Brasil.