Air pollution scenarios generated by solid waste management: a current challenge in the department of Boyacá, Colombia

Main Article Content

Fredy Alexander Adame Erazo
Hugo Fernando Castro Silva https://orcid.org/0000-0001-6020-402X
Fernando Trejo Zárraga
Karol Lizeth Roa Bohórquez https://orcid.org/0000-0001-8696-2232

Keywords

Air pollution; estimation models; waste management; short-lived climate pollutants; landfills.

Abstract

This work investigates several scenarios of waste management in the department of Boyacá, Colombia. Previous research have identified the potential risks of improper waste management, including the disposal of large amounts of organic matter increasing levels of CH4 , NOx , SOx , O3 , CO2 , black carbon (BC) and organic carbon (OC). Despite the relative short life span of these pollutants, changes in waste sector and final disposal policies causes a significant impact in urban air quality, ecosystems and health. In this way, this paper proposes a method that estimates short-lived climate pollutants from years 2000 to 2050, based in the collection of available data in the waste sector of Boyacá. The estimation models has been conducted using the SWEET 2.0 tool, an initiative from the Climate and Clean Air Coalition of the United Nations Environment Program. Each model includes a baseline and the analysis of three scenarios: (1) new compost facility; (2) landfill upgrades and (3) expand recycling. Results indicate that by 2050 levels of air pollution will continue to show a growing trend, so a detailed analysis of the current situation of waste management should be done. In the future, expanding recycling should be promoted in order to reduce the emissions of specific pollutants such as CO2 , CH4 and black carbon in Boyacá.

Abstract 629 | PDF (Spanish) Downloads 497

References

Agudelo-Calderón, C., García-Ubaque, J., Robledo-Martínez, R., García-Ubaque, C., & Vaca, M. (2015). Caracterización de la formación y desempeño del talento humano que labora en Salud Ambiental en Colombia. Revista de Salud Pública, 17, 552-564. https://doi.org/10.15446/rsap.v17n4.54107

Bond, T., Doherty, S., Fahey, D., Forster, P., Berntsen, T., & DeAngelo, B. et al. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), 5380- 5552. https://doi/10.1002/jgrd.50171

Coservicios S.A. E.S.P. (2018). Informe de gestión 2017 (pp. 44-45). Sogamoso. Retrieved from https://www.coserviciosesp. com/wp-content/uploads/2019/08/ INFORME-DE-GESTION-2017-final.pdf

DANE. (2018). Resultados Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/files/censo2018/ informacion-tecnica/presentaciones territorio/190727-CNPV-presentacion Boyaca-Sogamo.pdf

Demirgok, B., Thiruvengadam, A., Pradhan, S., Besch, M., Thiruvengadam, P., Posada, F., & Hu, S. (2021). Real world emissions from modern heavy duty vehicles: Sensitivity analysis of in-use emissions analysis methods. Atmospheric Environment, 252, 118294. https://doi.org/10.1016/j.atmosenv.2021.118294

Eriksson, O., Reich, M. C., Frostell, B., Björklund, A., Assefa, G., Sundqvist, J. O., & Thyselius, L. (2005). Municipal solid waste management from a systems perspective. Journal of cleaner production, 13(3), 241-252. https://doi.org/10.1016/j.jclepro.2004.02.018

Frey, H., & Kuo, P. (2009). Real-world energy use and emission rates for idling long haul trucks and selected idle reduction technologies. Journal of the Air & Waste Management Association, 59(7), 857- 864. https://doi.org/10.3155/1047-3289.59.7.857

Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., & Waitz, I. A. (2010). Transport impacts on atmosphere and climate: Metrics. Atmospheric Environment, 44(37), 4648-4677. https://doi.org/10.1016/j.atmosenv.2009.04.044

Gaitán, M., & Cárdenas, P. (2017). Guía para la elaboración de inventarios de emisiones atmosféricas. Bogotá D.C.: Ministerio de Ambiente y Desarrollo Sostenible. https:// www.minambiente.gov.co/images/ AsuntosambientalesySectorialyUrbana/ pdf/emisiones_atmosfericas_ contaminantes/documentos_ relacionados/guia_para_la_ elaboracion_de_inventarios_de_ emisiones_atmosfericas.pdf García-Ubaque, C.,

García-Ubaque, J., & Vaca Bohórquez, M. (2013). Environmental health: the evolution of Colombia’s current regulatory framework. Revista de Salud Pública, 15(1), 56-65.

Haro, K., Ouarma, I., Nana, B., Bere, A., Tubreoumya, G. C., Kam, S. Z., & Koulidiati, J. (2019). Assessment of CH4 and CO2 surface emissions from Polesgo’s landfill (Ouagadougou, Burkina Faso) based on static chamber method. Advances in Climate Change Research, 10(3), 181-191. https://doi.org/10.1016/j.accre.2019.09.002

Khan, A., Clark, N., Gautam, M., Wayne, W., Thompson, G., & Lyons, D. (2009). Idle emissions from medium heavy-duty diesel and gasoline trucks. Journal of the Air & Waste Management Association, 59(3), 354-359. https://doi.org/10.3155/1047-3289.59.3.354

Lezama, J. (1996). La construcción ideológica y política de la contaminación del aire: consideraciones para el caso de la ciudad de México. Estudios Demográficos Y Urbanos, 11(1), 31-67. https://doi.org/10.24201/edu.v11i1.963

Medina, E. (2019). La contaminación del aire, un problema de todos. Revista De La Facultad De Medicina, 67(2), 189-191. https://doi.org/10.15446/revfacmed. v67n2.82160

Qian, H., Xu, S., Cao, J., Ren, F., Wei, W., Meng, J., & Wu, L. (2021). Air pollution reduction and climate co-benefits in China’s industries. Nature Sustainability, 1-9. https://doi.org/10.1038/s41893-020-00669-0

Quijano, L., Díez, H., Montes, M., & Castro, H. (2014). Implementación de procesos sostenibles vinculando industrias regionales: reciclaje de residuos siderúrgicos como proyecto de cambio de la manpostería en Boyacá-Colombia. Revista EAN, (77), 82. https://doi.org/10.21158/01208160. n77.2014.817

Roa, K., Paredes, R., Trejo, F., Castro, H., Vera, E., & Peña, G. (2019). Modelling the effect of temperature on the physical and mechanical properties of ceramic composites filled with foundry sand waste. Journal of Physics: Conference Series, 1386, 012126. https://doi.org/10.1088/1742- 6596/1386/1/012126

Salinas, N. (2017). El modelo de control de gestión en las empresas de servicios públicos domiciliarios en Colombia: balance y desafíos durante la vigencia de la Ley 142. Revista Activos, 15(29).

Stockwell, C., Yokelson, R., Kreidenweis, S., Robinson, A., DeMott, P., & Sullivan, R. et al. (2014). Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 14(18), 9727- 9754. https://doi.org/10.5194/acp-14-9727-2014

Suárez, N., & Romero Rojas, J. (2018). Inventory of supply sources of aqueduct systems of municipal heads of Colombia. Revista De La Escuela Colombiana De Ingeniería, 112, 21-26.

Suárez, Z., Sepúlveda, O., Patarroyo, M., & Canaria, L. C. (2020). Modelo matemático para estimar curvas de intensidad, duración y frecuencia de lluvias extremas en Tunja, Colombia. Información tecnológica, 31(1), 193- 206. http://dx.doi.org/10.4067/S0718- 07642020000100193

Superintendencia de Servicios Públicos Domiciliarios. (2019). Disposición Final de Residuos Sólidos - informe nacional 2018 (Report No. 11). Superservicios: Bogotá. https://www.superservicios.gov.co/sites/ default/archivos/Publicaciones/ Publicaciones/2020/Ene/informe_ nacional_disposicion_final_2019_1.pdf

Vitolo, C., Scutari, M., Ghalaieny, M., Tucker, A., & Russell, A. (2018). Modeling air pollution, climate, and health data using Bayesian Networks: A case study of the English regions. Earth and Space Science, 5(4), 76-88. https://doi.org/10.1002/2017EA000326