Incidence of porosity on the thermal properties of a sample sieved and compacted at constant pressure
Main Article Content
Keywords
Atomized clay, compaction pressure, porosity, thermal properties, grainsize.
Abstract
The knowledge of the thermal properties of materials in granular form plays an important role both in industry and in materials science, due to their applications and risks that can bring people into different industrial production processes. In the ceramics industry very little work is done on the knowledge of thermal properties - thermal conductivity (K), thermal diffusivity (α), thermal effusivity () and specific heat per unit ε volume (C)- depending on porosity or grain size. The present work is located within the type of applied exploratory research, which aims to determine the thermophysical properties (k, α, ε, C) at room temperature, of samples of red clay powders manufactured by spray dried processes, depending on variables such as the distribution of particle size, porosity and compaction pressure. To determine the granulometric distribution was used the vibrotamiz mark Gabrielli®, which was left vibrating for a time of five minutes, in order to know the clay powder through in each mesh and retained in the next. The compaction process was carried out through a manual equipment, where the sample is applied a constant load or pressure of 200 kg / cm2 . The properties -thermal conductivity (K) and thermal diffusivity (α)- were measured through the sh-1 dual sensor belonging to the KD2 Pro device, the other two properties -thermal effusivity () and the specific heat per unit volume ε(C)- were calculated using the values of K and α, and the expressions y respectively. The thermal properties (k, α, ε and C) of the sieved sample, compacted at constant pressure of 200 kg/cm2 depending on the size of the grain or the relative porosity, decrease with increasing the grain size and its relative porosity; the reduction in the vacuum index is observed.
References
Ariza, M. R., Aguirre, D., Quesada, A., Abril, A. M., & García, F. J. (2016). ¿Lana o metal? Una propuesta de aprendizaje por indagación para el estudio de las propiedades térmicas de materiales comunes. Revista Electrónica de Enseñanza de las Ciencias, 15(2), 297- 311.
Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Thermal conductivity and the mechanisms of energy transport. Transport Phenomena Second Edition (pp 266–287). New York: John Wiley & Sons
Boeker, E., & Grondelle, R. v. (1999). Environmental Physics. New York: Wiley.
Bristow, K. L. (1998). Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology, 89(2), 75-84.
Buenfil Berzunza, C. M. (2007). Caracterización experimental del comportamiento hidromecánico de una arcilla compactada. (Tesis de doctorado). Universitat Politècnica de Catalunya.
Chekhonin, E., Parshin, A., Pissarenko, D., Popov, Y., Romushkevich, R., Safonov, S., & Stenin, V. P. (2012). When rocks get hot: thermal properties of reservoir rocks. Oilfield Review, 24(3), 20-37.
Clauser, C., & Huenges, E. (1995). Rock Physics and Phase Relations. A Handbook of Physical Constants (Issue 1).
DAS, B. M. (2001). Fundamentos de ingeniería geotécnica. México: Editorial Thomson Learning.
Decagon-Devices . (2011). KD2 Pro Compliance to ASTM and IEEE Standards. Application Note.
E. Boeker , & R. van Grondelle. (1999). Environmental Physics. New York: Wiley.
Eppelbaum, L., , L., Kutasov, I., & Pilchin, A. (2014). Thermal Properties of Rocks and Density of Fluids. En Applied Geothermics (pp. 99-149). Springer, Berlin, Heidelberg.
Gómez , M., & Peña, Y. (2009). Determinación experimental de la conductividad térmica efectiva y simulación numérica de la conducción de calor en bloques de arcilla Nº 5 fabricados en Cúcuta y su área metropolitana (Trabajo de pregrado). Universidad Francisco de Paula Santander.
Gordillo-Delgado, F. (2019). Uso de la técnica de relajación térmica para la medición de calor específico de láminas recubiertas con TiO2. Scientia et technica, 24(4), 659-665.
Holman, J. P. (1998). Transferencia de calor. In C. F. Madrid: Mc graw hill (Octava edi, Vol. 7, Issue 11). Marin, E. (2006). Thermal physics concepts: the role of the thermal effusivity. The Physics Teacher, 44(7), 432-434.
Marın, E., Delgado-Vasallo, O., & Valiente, H. ́ (2003). A temperature relaxation method for the measurement of the specific heat of solids at room temperature in student laboratories. American Journal of Physics, 71(10), 1032-1036.
Norma ASTM. (2000). ASTM D5334-00. Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure.
Norma ASTM. (2007). ASTM D422–63. Standard Test Method for Particle-Size Analysis of Soils.
Norma IEEE . (1981). IEEE 442-1981. Guide for Soil Thermal Resistivity Measurements.
Popov, Y., Beardsmore, G., Clauser, C., & Roy, S. (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49(10), 4179-4207.
Popov, Y., Beardsmore, G., Clauser, C., & Roy, S. (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49(10), 4179-4207.
Poulsen, K. P. (1982). Thermal diffusivity of foods measured by simple equipment. Journal of Food Engineering, 1(2), 115-122.
Ramakrishnan, D., Bharti, R., Nithya, M., Kusuma, K. N., & Singh, K. D. (2012). Medición de las propiedades térmicas de las granulitas intactas y meteorosas seleccionadas y su relación con las propiedades de la roca. Geofísica, 77(3), D63-D73.
Rodríguez, G. P., Arciniegas, V. J., & Moreno, H. J. (2010). Efecto de la presión de compactación en las propiedades termofísicas de polvos de arcilla roja elaboradas por atomización. Respuestas, 15(2), 25-33.
Salazar, A. (2003). On thermal diffusivity. European journal of physics, 24(4), 351- 358.
Segovia, E. E. (2016). Influencia de la concentración y dispersión de estructuras grafíticas (Grafito y nano placas de Grafito-GNP) sobre la conductividad térmica de compuestos de Polietileno de Alta Densidad (HDPE) empleando mezclado en fundido. (Tesis de doctorado). Centro de investigación en química aplicada: Saltillo, Coahuila.
Vincent, C., Silvain, J. F., Heintz, J. M., & Chandra, N. (2012). Effect of porosity on the thermal conductivity of copper processed by powder metallurgy. Journal of Physics and Chemistry of Solids, 73(3), 499-504.
Zhang, N., & Wang, Z. (2017). Review of soil thermal conductivity and predictive models. International Journal of Thermal Sciences, 117, 172–183