Energy characterization based on the ISO 50001 standard of a production plant in the agroindustrial sector

Main Article Content

Alexys Morales Medrano
Gonzalo Romero García
Dora Clemencia Villada Castillo

Keywords

Energy characterization, energy indicators, standard ISO 50001.

Abstract

The technological, energetic and organizational characterization activities developed in a fertilizer production company in Barranquilla, were based on the requirements established in the ISO 50001:2018 Standard, which was sponsored by UNIDO (United Nations Industrial Development Organization) and issued by the ISO organization on June 6, 2011 worldwide, accepted in Colombia by ICONTEC on January 20, 2012, subsequently updated on September 19, 2018 and is currently known as ISO 50001:2018. In terms of the plant’s savings potential, the savings potential associated with good manufacturing practices in which consumption is not associated with production can be reduced by 9.5%, which translates into 1408 kWh/day. For electrical energy consumption there is a critical production (PCRIT) according to the plant technology, calculated at 1400 Tm/day and an average production (PPROM) of the plant of 1304 Tm/ day, which translates into 3623 kWh/day.

Abstract 385 | PDF (Spanish) Downloads 701

References

Campos, J. C., & Prias, O. F. (2013). Implementación De Un Sistema De Gestión De La Energía, Guía Con Base En La Norma Iso 50001. Universidad Nacional de Colombia.

Dąbrowska, K. (2018). Project of the implementation of the Environmental Management System based on the standard ISO 14001: 2015 at Formiplast. Instytut Organizacji Systemów Produkcyjnych.

Dzene, I., Polikarpova, I., Zogla, L., & Rosa, M. (2015). Application of ISO 50001 for Implementation of Sustainable Energy Action Plans. Energy Procedia, 72, 111–118. https://doi.org/10.1016/j. egypro.2015.06.016

Finnerty, N., Sterling, R., Coakley, D., & Keane, M. M. (2018). An energy management maturity model for multi-site industrial organisations with a global presence. Journal of Cleaner Production, 167, 1232–1250. https://doi. org/10.1016/j.jclepro.2017.07.192

Gordić, D., Babić, M., Jovičić, N., Šušteršič, V., Končalović, D., & Jelić, D. (2010). Development of energy management system–Case study of Serbian car manufacturer. Energy Conversion and Management, 51(12), 2783–2790.

Iwata, N. (2006). World Trade Organization and the Recycling Trade: Trade Measures for Global Environmental Preservation. Japanese Economy, 33(4), 45–64. https:// doi.org/10.2753/JES1097-203X330403

Jovanović, B., & Filipović, J. (2016). ISO 50001 standard-based energy management maturity model - Proposal and validation in industry. Journal of Cleaner Production, 112, 2744–2755. https://doi.org/10.1016/j. jclepro.2015.10.023

Kanneganti, H., Gopalakrishnan, B., Crowe, E., Al-Shebeeb, O., Yelamanchi, T., Nimbarte, A., Currie, K., & Abolhassani, A. (2017). Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustainable Energy Technologies and Assessments, 23(June), 121–135. https:// doi.org/10.1016/j.seta.2017.09.003

Kibria, A., Akhundjanov, S. B., & Oladi, R. (2019). Fossil fuel share in the energy mix and economic growth. International Review of Economics and Finance, 59(September 2018), 253–264. https://doi.org/10.1016/j. iref.2018.09.002

McKane, A., Therkelsen, P., Scodel, A., Rao, P., Aghajanzadeh, A., Hirzel, S., Zhang, R., Prem, R., Fossa, A., Lazarevska, A. M., Matteini, M., Schreck, B., Allard, F., Villegal Alcántar, N., Steyn, K., Hürdoğan, E., Björkman, T., & O’Sullivan, J. (2017). Predicting the quantifiable impacts of ISO 50001 on climate change mitigation. Energy Policy, 107(May), 278–288. https:// doi.org/10.1016/j.enpol.2017.04.049

Pardo Martínez, C. I., & Alfonso Piña, W. H. (2016). Regional analysis across Colombian departments: A non-parametric study of energy use. Journal of Cleaner Production, 115, 130–138. https://doi. org/10.1016/j.jclepro.2015.12.019

Ríos-Ocampo, J. P., Álvarez-Espinosa, A. C., Kober, T., Turner, S. W. D., Daenzer, K., Arango-Aramburo, S., Hejazi, M. I., Romero-Otalora, G. D., & van der Zwaan, B. (2019). Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy, 128(January), 179–188. https://doi. org/10.1016/j.enpol.2018.12.057

Ylipulli, J., Suopajärvi, T., Ojala, T., Kostakos, V., Kukka, H., van den Berg, M., Wendel Vos, W., van Poppel, M., Kemper, H., van Mechelen, W., Maas, J., & Corpoema, C. E. (2014). Formulación de un plan de desarrollo para las fuentes no convencionales de energia en Colombia (PDFFNCE). Technological Forecasting and Social Change, 89, 145–160. https:// doi.org/10.1016/j.techfore.2013.08.037