Efficiency analysis of a solar disk collector with Stirling engine in the city of Armenia, Colombia

Main Article Content

Carlos Andrés Cárdenas Valencia https://orcid.org/0000-0002-0882-1810
Ramón Pali Casanova

Keywords

Solar energy, Disc collector, Thermal efficiency, Optical efficiency, Stirling engine, Sun tracking

Abstract

This paper presents the study and analysis of the thermal and optical efficiency of a disk collector with a Stirling engine located in the city of Armenia, Colombia, used to produce electrical energy. The implementation of a 65 cm diameter parabolic disk solar concentrator with a small Stirling engine was carried out. Weekly tests were carried out, measuring the reflector temperature, absorber temperature, ambient temperature and solar radiation between 9 am and 3 pm for 5 months. The thermal and optical efficiency and the power generated by the collector were calculated. Likewise, an automatic solar tracking system was developed based on linear actuators controlled by an Arduino board, in order to obtain a higher concentration of incident radiation. The average solar radiation was 626 W/m2 and an average thermal efficiency of 39,6% was obtained, while the optical efficiency was 33%, values compared with disk collectors reported in the literature.

Abstract 433 | PDF (Spanish) Downloads 789

References

Aditya, A., Balaji, G., Chengappa, B. C., Chethan Kumar, K., & Mohankrishna, S. A. (2018). Design and development of Solar Stirling Engine for power generation. IOP Conference Series: Materials Science and Engineering, 376(1), 0–10. https://doi.org/10.1088/1757- 899X/376/1/012022

Alarcón, J. A., Hortúa, J. E., & López G., A. (2013). Design and construction of a solar collector parabolic dish for rural zones in Colombia. TECCIENCIA, 7(14), 14–22. https://doi.org/10.18180/ tecciencia.2013.14.

Dantsoho, A. A., Momoh, M., Garba, M. M., & Muazu, M. (2019). OPTICAL ANALYSIS OF PARABOLIC DISH SOLAR CONCENTRATOR FOR HEATING PROCESSES. International Journal of All Research Writings (IJARW), 1(August), 3–8.

El Ouederni, A., Salah, M., Askri, F., Nasrallah, M., & Aloui, F. (2009). Experimental study of a parabolic solar concentrator. Revue des Energies Renouvelables, 12 (3), (2009), 395-404.

El Ydrissi, M., Ghennioui, H., Bennouna, E., & Farid, A. (2019). Geometric, optical and thermal analysis for solar parabolic trough concentrator efficiency improvement using the photogrammetry technique under semi-arid climate. Energy Procedia, 157, (2019), 1050- 1060.

Gholamalizadeh, E., & Chung, J. D. (2017). Exergy analysis of a pilot parabolic solar dish-Stirling system. Entropy, 19(10), 1–12. https://doi.org/10.3390/ e19100509

Hafez, A. Z., Soliman, A., El-Metwally, K. A., & Ismail, I. M. (2016). Solar parabolic dish Stirling engine system design, simulation, and thermal analysis. Energy Conversion and Management, 126, 60–75. https://doi.org/10.1016/j. enconman.2016.07.067

Jayadevamurthy, M., Chandrasekhar, R., Maruthi, R., & Kumar, S. (2017). Design and Performance Analysis of Microcontroller based Solar Parabolic Dish Concentrator. International Journal of Science Technology & Engineering (IJSTE), 3(09), 584–588.

Kulal, S. D., & Patil, P. S. R. (2016). Performance Analysis of Parabolic Solar Dish Collector for Various Reflecting Materials. International Research Journal of Engineering and Technology (IRJET), 03(11), 326–329.

Li, Y., Choi, S. S., & Yang, C. (2014a). An average-value model of kinematic Stirling engine for the study of variablespeed operations of dish-Stirling solarthermal generating system. IEEE International Conference on Control and Automation, ICCA, 1310–1315. https:// doi.org/10.1109/ICCA.2014.6871113

Mohammed, I. L., & Bartholomew, P. (2012). DEVELOPMENT OF CONTROL CIRCUIT FOR PARABOLIC DISH SOLAR WATER HEATER. International Journal of Advances in Engineering & Technology (IJAET), 3(2), 16–25.

Nilsson, M., Jamot, J., & Malm, T. (2017). Operational data and thermodynamic modeling of a Stirling-dish demonstration installation in desert conditions. AIP Conference Proceedings, 1850(June). https://doi.org/10.1063/1.4984408

Papageorgiou, G., Maimaris, A., Hadjixenophontos, S., & Ioannou, P. (2014). HelioTrope: An innovative and efficient prototype for solar power production. EPJ Web of Conferences, 79. https://doi.org/10.1051/ epjconf/2013790301

Patiño-Jiménez, F., Nahmad-Molinari, Y., Moreno-Oliva, V. I., De Los SantosGarcía, F., & Santiago-Alvarado, A. (2015). Construction and optical testing of inflatable membrane mirror using structured light technique. International Journal of Photoenergy, 2015, 1–8. https://doi.org/10.1155/2015/196186

Prinsloo, G., Dobson, R., & Schreve, K. (2014). Mechatronic platform with 12m solar thermal concentrator for rural power generation in Africa. Energy Procedia, 49, 1470–1480. https://doi. org/10.1016/j.egypro.2014.03.15

Romero H, O., Romero H, S., & Wood, D. (2010). Energías Renovables: Impulso político y tecnológico para un México sustentable. www.researchgate.net/ profile/Sergio_Romero-Hernandez/ publication/324173455_Energias_ Renovables_Impulso_politico_y_ tecnologico_para_un_ Mexico_sustentable/ links/5ac3b472aca27218eabc09c8/ Energias-Renovables-Impulso-politicoy-tecnologico-para-un-Mexico-suste

Xu, J., Gan, S., Li, S., Ruan, Z., Chen, S., Wang, Y., Gui, C., & Wan, B. (2016). Dish layouts analysis method for concentrative solar power plant. SpringerPlus, 5(1). https:// doi.org/10.1186/s40064-016-3540-3

Yan, J., Peng, Y. D., Cheng, Z. R., Liu, F. M., & Tang, X. H. (2017). Design and implementation of a 38 kW dishStirling concentrated solar power system. IOP Conference Series: Earth and Environmental Science, 93(1), 0–14. https://doi.org/10.1088/1755- 1315/93/1/012052