Implementation and evaluation of a Learning Object in natural sciences: the case of electric energy

Main Article Content

Alberto Gutiérrez Vásquez https://orcid.org/0000-0002-9846-2486
Boris Fernando Candela Rodríguez https://orcid.org/0000-0002-5833-1975
Lina Marcela Gallardo Guzmán https://orcid.org/0000-0002-0170-7134

Keywords

Key Design Features (KDFs), Learning disabilities, Instructional design, Science education, Learning theories

Abstract

This research addressed the implementation and evaluation of a Learning Object (LO) for the teaching of physics in a secondary school in the municipality of Cali (Colombia). For this purpose, a mixed research methodology (qualitativequantitative) focused on the qualitative and interpretative perspective by case study was used, in which documentary sources such as: Key Design Features (KDFs), participant observation, videos of class sessions, reflective diary of the teacher, pretest and posttest, student and teacher materials were used. The formative evaluation of this study was carried out through a tripartite effectiveness evaluation model, synergistically taking into account the following elements: design intentions, teacher and student actions during implementation, and learning achieved by the students. Finally, it was evidenced that the sequence of learning activities of the LO assisted students in understanding the content on the basic principles that allow the production, transport and use of electric energy. However, such understanding does not depend exclusively on the LO, but also on the teacher’s reasoning and pedagogical actions, in conjunction with the contextual factors of the educational institution.

Abstract 319 | PDF (Spanish) Downloads 321

References

Alzaghibi, M. A. (2010). Instructional Design: Development, implementation and evaluation of a teaching sequence about plant nutrition in Saudi (Tesis doctoral). University of Leeds. https://core.ac.uk/ download/pdf/43248.pdf

Blumenfeld, P., Fishman, B. J., Krajcik, J., Marx, R. W. y Soloway, E. (2000). Creating usable innovations in systemic reform: Scaling up technology-embedded project-based science in urban schools. Educational psychologist, 35(3), 149-164. https://doi.org/10.1207/ S15326985EP3503_2

Borg Marks, J. (2012). Understanding key concepts of electric circuits: Students’ use of mental models (Tesis doctoral) University of York. http://etheses. whiterose.ac.uk/3938/1/signed_PhD_ Thesis.pdf

Brown, A. L. (1990). Domain‐specific principles affect learning and transfer in children. Cognitive science, 14(1), 107- 133. https://doi.org/10.1016/0364- 0213(90)90028-U

Candela, B. F. (2016). La ciencia del diseño educativo. Santiago de Cali: Universidad del Valle.

Candela, B. F. (2019). Los estudios de diseño una metodología de investigación novedosa para la educación. Revista de la Facultad de Ciencias, 8(2), 140–157. https://doi.org/10.15446/rev.fac.cienc. v8n2.79267

Cobb, P. y Gravemeijer, K. (2008). Experimenting to Support and Understand Learning Processes. En A. Kelly, R. Lesh y J. Baek (Eds.), Handbook of Design Research Methods in Education: Innovations in Science, Technology, Engineering, and Mathematics Learning and Teaching (1 ed., pp. 68-95). Routledge.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R. y Schauble, L. (2003). Design Experiments in Educational Research. Educational Researcher, 32(1), 9-13. http://www.jstor.org/stable/3699928

Collins, A. (1992). Toward a design science of education. En E. Scanlon y T. O’Shea (Eds.), New directions in educational technology (pp. 15-22). Springer-Verlag.

Collins, A., Joseph, D. y Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues. The Journal of the Learning Sciences, 13(1), 15-42. https://www.jstor.org/stable/1466931

Confrey, J. (2006). The evolution of design studies as methodology. En R. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 135-152). Cambridge University Press.

Design-Based Research Collective (2003). Design-based research: An emerging paradigm for educational Inquiry. Educational Researcher, 32(1), 5-8. http://www.designbasedresearch.org/ reppubs/DBRC2003.pdf

Engle, R. y Conant, F. (2010). Guiding Principles for Fostering Productive Disciplinary Engagement: Explaining an Emergent Argument in a Community of Learners Classroom. Cognition and Instruction, 20(4), 399-483. https://doi.org/10.1207/ S1532690XCI2004_1

Ford, M. J., y Forman, E. A. (2006). Redefining disciplinary learning in classroom contexts. Review of research in education, 30(1), 1-32. https://www.jstor. org/stable/4129768

Glaser, B. y Strauss, A. (1968). The Discovery of grounded theory: strategies for qualitative research. Taylor & Francis Group.

Gutiérrez, A. (2022). Implementación y evaluación de un objeto de aprendizaje en ciencias naturales: El caso ¿De dónde viene la energía eléctrica que utilizo en mi casa? (Tesis de maestría). Universidad del Valle. https://drive.google.com/file/d/1T 3OxNVfIGENHIwBbCDM2H6V3g72Pxt GE/view?usp=sharing

Hake, R. (1998). Interactive-engagement versus traditional methods: A six-thousandstudent survey of mechanics test data for introductory physics courses. American Journal Physics, 66(1), 64-74. https://doi.org/10.1119/1.18809

Hernández-Sampieri, R. y Mendoza, C. P. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Education.

Johnstone, A. (1982). Macro and micro chemistry. School Science Review, 64, 377-379.

Klopfer, L. E. (1983). Research and the crisis in science education. Science Education, 67(3), 283-284.

Lagemann, E. C. (2002). An elusive science: The troubling history of education research. University of Chicago Press.

Martínez Villalobos, G., Arciniegas, A. M. y Lugo González, C. A. (2016). Formación docente en TIC con el Centro de Innovación Educativa CIERSUR. Trilogía Ciencia Tecnología Sociedad, 8(14), 65-80. https://doi. org/10.22430/21457778.417

Millar, R. A., Tiberghien, A. y Maréchal J. (2002). Varieties of labwork: A way of profiling labwork tasks. En D. Psillos y H. Niedderer (Eds.), Teaching and learning in the science laboratory (pp. 9–20). Kluwer Academic Publications.

Ministerio de Educación Nacional (2009). ¿Qué es un objeto de aprendizaje? Medellín, Colombia. Programa integración de tecnologías a la docencia. Universidad de Antioquia. http://aprendeenlinea. udea.edu.co/lms/men/oac1.html

Reigeluth, C. M. y Frick, T. W. (1999). Formative research: A methodology for creating and improving design theories. En C. M. Reigeluth (Ed.), Instructional design theories and models: A new paradigm of instructional theory (pp. 633-651). Lawrence Erlbaum Associates.

Santaella, L. (2001). ¿Por qué la semiótica de Peirce es también una teoría de la comunicación? Cuadernos de la Facultad de Humanidades y Ciencias Sociales. Universidad Nacional de Jujuy, (17), 415-422. http://www. scielo.org.ar/scielo.php?pid=S1668- 81042001000200024&script=sci_arttext

Shwartz, Y., Weizman, A., Fortus, D., Krajcik, J. y Reiser, B. (2008). Middle School Science Curriculum: Coherence as Design Principle. The Elementary School Journal, 109(2), 199-219. http://websites.umich.edu/~hiceweb/ presentations/documents/Shwartzetal_ coherence.pdf

Stocklmayer, S. M. y Treagust, D. F. (1996). Images of electricity: How do novices and experts model electric current? International Journal of Science Education, 18(2), 163- 178. https://doi. org/10.1080/0950069960180203

Yin, R. (2003). Case study research: design and methods (3ª ed., Vol. 5). Sage Publications.