Influencia del nivel de carga, el cambio del nivel freático y la altura del estrato cohesivo en los asentamientos de consolidación en un edificio simétrico

##plugins.themes.bootstrap3.article.main##

Javier Alfonso Cárdenas Gutiérrez
Jose Leonardo Jacome Carrascal https://orcid.org/0000-0002-6022-6891
Mawency Vergel Ortega

Keywords

consolidated settlement, change of parameters, buildings with isolated footings

Resumen

The research evaluates the consolidation liquidations generated by a four quadrant building, where each one of the foot types is studied changing some of these parameters, to know which of these three aspects is the one that more influences in the consolidation liquidation in buildings of three levels, The methodology includes change the amount of levels that affect the load and dimensions of the footing, analysis of variables and influence of the change of phreatic level in another of the footing and finally the settlement is evaluated with the change of height of the soft stratum, that will be the consolidated stratum. It is concluded that the analysis of the variability of the settlements caused by the change of factors load levels, dimensions of the footings, variability of the phreatic level and change in the height of the cohesive stratum, where the consolidation will be presented.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 20 | PDF Downloads 15

Citas

[1] Ai, Z. Y., & Chen, Y. F. (2020). FEM-BEM coupling analysis of vertically loaded rock-socketed pile in multilayered transversely isotropic saturated media. Computers and Geotechnics, 120, 103437. doi:10.1016/j.compgeo.2019.103437
[2] Alhama Manteca, I., García-Ros, G., & Alhama López, F. (2018). Universal solution for the characteristic time and the degree of settlement in nonlinear soil consolidation scenarios. A deduction based on nondimensionalization. Communications in Nonlinear Science and Numerical Simulation, 57, 186–201. doi:10.1016/j.cnsns.2017.09.007

[3] Castro, J., Cimentada, A., da Costa, A., Cañizal, J., & Sagaseta, C. (2013). Consolidation and deformation around stone columns: Comparison of theoretical and laboratory results. Computers and Geotechnics, 49, 326–337. doi:10.1016/j.compgeo.2012.09.004
[4] Deng, J.-H., Lee, J.-W., & Lo, W. (2019). Closed-form solutions for one-dimensional consolidation in saturated soils under different waveforms of time-varying external loading. Journal of Hydrology, 573, 395–405. doi:10.1016/j.jhydrol.2019.03.087
[5] Feng, J., Ni, P., & Mei, G. (2019). One‐dimensional self‐weight consolidation with continuous drainage boundary conditions: Solution and application to clay‐drain reclamation. International Journal for Numerical and Analytical Methods in Geomechanics. doi:10.1002/nag.2928
[6] Feng, W.-Q., & Yin, J.-H. (2020). Development and Verification of a New Simplified Method for Calculating Settlement of a Thick Soil Layer with Nonlinear Compressibility and Creep. International Journal of Geomechanics, 20(3), 04019184. doi:10.1061/(asce)gm.1943-5622.0001562
[7] Hoang, L. T., & Matsumoto, T. (2020). Long-term behavior of piled raft foundation models supported by jacked-in piles on saturated clay. Soils and Foundations. doi:10.1016/j.sandf.2020.02.005
[8] Ibarguen-Mondragon E, Vergel-Ortega M, Gómez Vergel CS. El modelo de Malthus aplicado al crecimiento exponencial de Covid 19. bol.redipe [Internet]. 11 de noviembre de 2020 [citado 3 de febrero de 2021];9(11):159-64. Disponible en: ttps://revista.redipe.org/index.php/1/article/view/1119
[9] Kodsi, S. A., Oda, K., & Awwad, T. (2018). Viscosity effect on soil settlements and pile skin friction distribution during primary consolidation. Int J GEOMATE, 15(52), 152-159.
[10] Li, W., Gao, F., Huang, H., Yamamoto, H., & Takeuchi, K. (2010). Consolidation Settlement Analyses on a Composite Foundation System Combined with Walled and Columniform Soil Improvement. Advanced Materials Research, 163-167, 2318–2327. doi:10.4028/www.scientific.net/amr.163-167.2318
[11] Liu, X., Liu, J., & Feng, X. (2018). Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China. Journal of Ocean University of China, 17(3), 545–554. doi:10.1007/s11802-018-3393-1
[12] Maldonado, Hugo Enrique; Vergel Ortega, Mawency; Gómez Vergel, Carlos SebastiánPrácticas pedagógicas e índices de creatividad en la enseñabilidad de la física electromagnética Revista Logos, Ciencia & Tecnología, vol. 7, núm. 2, enero-junio, 2016, pp. 97-104
[13] Nav, M. A., Rahnavard, R., Noorzad, A., & Napolitano, R. (2020). Numerical evaluation of the behavior of ordinary and reinforced stone columns. Structures, 25, 481–490. doi:10.1016/j.istruc.2020.03.021
[14] Soomro, M. A., Kumar, M., Xiong, H., Mangnejo, D. A., & Mangi, N. (2020). Investigation of effects of different construction sequences on settlement and load transfer mechanism of single pile due to twin stacked tunnelling. Tunnelling and Underground Space Technology, 96, 103171. doi:10.1016/j.tust.2019.103171

[15] Ye, G. B., An, X., & Wu, J. (2012). A New Method for Predicting Consolidation Settlement of Soft Ground Reinforced with Preloading Technique. New Frontiers in Engineering Geology and the Environment, 45–48. doi:10.1007/978-3-642-31671-5_4
[16] Yu, J. Q., & Wu, X. W. (2013). Analysis of the Primary Consolidation Settlement Considering of the Settlement Load. Applied Mechanics and Materials, 353-356, 1063–1066. doi:10.4028/www.scientific.net/amm.353-356.1063
[17] Yune, C.-Y., & Olgun, C. G. (2015). Analysis of consolidation settlement of normally consolidated soil by layering under 3D conditions. KSCE Journal of Civil Engineering, 20(6), 2280–2288. doi:10.1007/s12205-015-0171-0