Influence of the load level, change in the freatic level and height of the cohesive stratum on the consolidation settlements in a symmetrical building

Main Article Content

Javier Alfonso Cárdenas Gutiérrez
Jose Leonardo Jacome Carrascal https://orcid.org/0000-0002-6022-6891
Mawency Vergel Ortega

Keywords

asentamiento consolidado, cambio de parámetros, , edificios con zapatas aisladas

Abstract

La investigación evalúa las liquidaciones de consolidación generadas por un edificio de cuatro cuadrantes, donde se estudia cada uno de los tipos de pie cambiando algunos de estos parámetros, para saber cuál de estos tres aspectos es el que más influye en la liquidación de consolidación en edificios de tres niveles, La metodología incluye cambio la cantidad de niveles que afectan a la carga y dimensiones de la zapata, análisis de variables e influencia del cambio de nivel freático en otra de las zapatas y finalmente se evalúa el asentamiento con el cambio de altura del estrato blando, que será el estrato consolidado. Se concluye que el análisis de la variabilidad de los asentamientos causada por el cambio de factores niveles de carga, dimensiones de las zapatas, variabilidad del nivel freático y cambio en la altura del estrato cohesivo, donde se presentará la consolidación.

Abstract 289 | PDF (Spanish) Downloads 171

References

[1] Ai, Z. Y., & Chen, Y. F. (2020). FEM-BEM coupling analysis of vertically loaded rock-socketed pile in multilayered transversely isotropic saturated media. Computers and Geotechnics, 120, 103437. doi:10.1016/j.compgeo.2019.103437
[2] Alhama Manteca, I., García-Ros, G., & Alhama López, F. (2018). Universal solution for the characteristic time and the degree of settlement in nonlinear soil consolidation scenarios. A deduction based on nondimensionalization. Communications in Nonlinear Science and Numerical Simulation, 57, 186–201. doi:10.1016/j.cnsns.2017.09.007

[3] Castro, J., Cimentada, A., da Costa, A., Cañizal, J., & Sagaseta, C. (2013). Consolidation and deformation around stone columns: Comparison of theoretical and laboratory results. Computers and Geotechnics, 49, 326–337. doi:10.1016/j.compgeo.2012.09.004
[4] Deng, J.-H., Lee, J.-W., & Lo, W. (2019). Closed-form solutions for one-dimensional consolidation in saturated soils under different waveforms of time-varying external loading. Journal of Hydrology, 573, 395–405. doi:10.1016/j.jhydrol.2019.03.087
[5] Feng, J., Ni, P., & Mei, G. (2019). One‐dimensional self‐weight consolidation with continuous drainage boundary conditions: Solution and application to clay‐drain reclamation. International Journal for Numerical and Analytical Methods in Geomechanics. doi:10.1002/nag.2928
[6] Feng, W.-Q., & Yin, J.-H. (2020). Development and Verification of a New Simplified Method for Calculating Settlement of a Thick Soil Layer with Nonlinear Compressibility and Creep. International Journal of Geomechanics, 20(3), 04019184. doi:10.1061/(asce)gm.1943-5622.0001562
[7] Hoang, L. T., & Matsumoto, T. (2020). Long-term behavior of piled raft foundation models supported by jacked-in piles on saturated clay. Soils and Foundations. doi:10.1016/j.sandf.2020.02.005
[8] Ibarguen-Mondragon E, Vergel-Ortega M, Gómez Vergel CS. El modelo de Malthus aplicado al crecimiento exponencial de Covid 19. bol.redipe [Internet]. 11 de noviembre de 2020 [citado 3 de febrero de 2021];9(11):159-64. Disponible en: ttps://revista.redipe.org/index.php/1/article/view/1119
[9] Kodsi, S. A., Oda, K., & Awwad, T. (2018). Viscosity effect on soil settlements and pile skin friction distribution during primary consolidation. Int J GEOMATE, 15(52), 152-159.
[10] Li, W., Gao, F., Huang, H., Yamamoto, H., & Takeuchi, K. (2010). Consolidation Settlement Analyses on a Composite Foundation System Combined with Walled and Columniform Soil Improvement. Advanced Materials Research, 163-167, 2318–2327. doi:10.4028/www.scientific.net/amr.163-167.2318
[11] Liu, X., Liu, J., & Feng, X. (2018). Inversion and Prediction of Consolidation Settlement Characteristics of the Fluvial Sediments Based on Void Ratio Variation in the Northern Modern Yellow River Subaqueous Delta, China. Journal of Ocean University of China, 17(3), 545–554. doi:10.1007/s11802-018-3393-1
[12] Maldonado, Hugo Enrique; Vergel Ortega, Mawency; Gómez Vergel, Carlos SebastiánPrácticas pedagógicas e índices de creatividad en la enseñabilidad de la física electromagnética Revista Logos, Ciencia & Tecnología, vol. 7, núm. 2, enero-junio, 2016, pp. 97-104
[13] Nav, M. A., Rahnavard, R., Noorzad, A., & Napolitano, R. (2020). Numerical evaluation of the behavior of ordinary and reinforced stone columns. Structures, 25, 481–490. doi:10.1016/j.istruc.2020.03.021
[14] Soomro, M. A., Kumar, M., Xiong, H., Mangnejo, D. A., & Mangi, N. (2020). Investigation of effects of different construction sequences on settlement and load transfer mechanism of single pile due to twin stacked tunnelling. Tunnelling and Underground Space Technology, 96, 103171. doi:10.1016/j.tust.2019.103171

[15] Ye, G. B., An, X., & Wu, J. (2012). A New Method for Predicting Consolidation Settlement of Soft Ground Reinforced with Preloading Technique. New Frontiers in Engineering Geology and the Environment, 45–48. doi:10.1007/978-3-642-31671-5_4
[16] Yu, J. Q., & Wu, X. W. (2013). Analysis of the Primary Consolidation Settlement Considering of the Settlement Load. Applied Mechanics and Materials, 353-356, 1063–1066. doi:10.4028/www.scientific.net/amm.353-356.1063
[17] Yune, C.-Y., & Olgun, C. G. (2015). Analysis of consolidation settlement of normally consolidated soil by layering under 3D conditions. KSCE Journal of Civil Engineering, 20(6), 2280–2288. doi:10.1007/s12205-015-0171-0