Investigaciones con CFD aplicadas a bombas centrífugas

##plugins.themes.bootstrap3.article.main##

Jhan Piero Rojas Suarez
Mawency Vergel Ortega https://orcid.org/0000-0001-8285-2968
Sofía Orjuela Abril

Keywords

Bomba centrifuga, CFD, rendimiento, modelo de turbulencia, optimización

Resumen

En el presente estudio se realiza un estudio de las investigaciones mediante CFD aplicadas a las bombas centrifugas. El estudio abarca los modelos de turbulencia generalmente utilizado para el estudio de las bombas centrifugas, el procedimiento normalmente usado para el análisis de proceso de optimización y las metodologías avanzadas para identificar los parámetros geométricos que inciden en el rendimiento. A partir del análisis documental se demuestra que avances en los modelos CFD y la disponibilidad de software, han posibilitado el desarrollo de complejos estudios enfocados en las bombas centrífugas. Los modelos de turbulencia permiten predecir el comportamiento inestable del flujo en las bombas centrifugas. Entre los diferentes modelos disponibles, se destaca el modelo k -e debido a su capacidad de predicción sin requerir una alta potencia computacional. El proceso de optimización de una bomba centrifuga involucra cambios geométricos que abarcan variaciones en el alabe, difusor, impeler y diámetros de la bomba. El procedimiento general para el análisis de optimización aplicados en bombas centrifugas puede ser una base para la construcción de una metodología más rápida y sistemática.

Descargas

Los datos de descargas todavía no están disponibles.
Abstract 36 | PDF Downloads 15

Citas

An, Z., Zhounian, L., Peng, W., Linlin, C., & Dazhuan, W. (2016). Multi-objective optimization of a low specific speed centrifugal pump using an evolutionary algorithm. Engineering Optimization, 48(7), 1251–1274. https://doi.org/ https://doi.org/10.1080/030521 5X.2015.1104987

Ayad, A. F., Abdalla, H. M., & Abo El Azm, A. S. (2015). Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance. International Conference on Aerospace Sciences and Aviation Technology, 16(AEROSPACE SCIENCES \& AVIATION TECHNOLOGY, ASAT-16- -May 26-28, 2015), 1–14. https://doi. org/10.21608/ASAT.2015.23015

Chen, H., He, J., & Liu, C. (2017). Design and experiment of the centrifugal pump impellers with twisted inlet vice blades. Journal of Hydrodynamics, Ser. B, 29(6), 1085–1088. https://doi. org/https://doi.org/10.1016/S1001- 6058(16)60822-3

Derakhshan, S., & Bashiri, M. (2018). Investigation of an efficient shape optimization procedure for centrifugal pump impeller using eagle strategy algorithm and ANN (case study: slurry flow). Structural and Multidisciplinary Optimization, 58(2), 459–473. https:// doi.org/https://doi.org/10.1007/ s00158-018-1897-3

Hou, H. C., Zhang, Y. X., Xu, C., Zhang, J. Y., & Li, Z. L. (2016). Effects of radial diffuser hydraulic design on a double-suction centrifugal pump. IOP Conference Series: Materials Science and Engineering, 129(1), 12017.

Houlin, L., Yong, W., Shouqi, Y., Minggao, T., & Kai, W. (2010). Effects of blade number on characteristics of centrifugal pumps. Chinese Journal of Mechanical Engineering-English Edition, 6, 742. https://doi.org/10.3901/ CJME.2010.06.742

Huang, R., Luo, X., Ji, B., Wang, P., Yu, A., Zhai, Z., & Zhou, J. (2015). Multi objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm. Science China Technological Sciences, 58(12), 2122–2130. https:// doi.org/https://doi.org/10.1007/s11431- 015-5865-5

Kaewnai, S., Chamaoot, M., & Wongwises, S. (2009). Predicting performance of radial flow type impeller of centrifugal pump using CFD. Journal of Mechanical Science and Technology, 23(6), 1620–1627. https://doi.org/https://doi. org/10.1007/s12206-008-1106-1

Liu, X., Li, H., Shi, X., & Fu, J. (2019). Application of biharmonic equation in impeller profile optimization design of an aero-centrifugal pump. Engineering Computations, 36(5), 1764–1795. https://doi.org/https://doi.org/10.1108/ EC-08-2018-0378

Meng, F., Zhang, H., Yang, F., Hou, X., Lei, B., Zhang, L., Wu, Y., Wang, J., & Shi, Z. (2017). Study of efficiency of a multistage centrifugal pump used in engine waste heat recovery application. Applied Thermal Engineering, 110, 779–786. INVESTIGACIONES CON CFD APLICADAS A BOMBAS CENTRÍFUGAS REVISTA BOLETÍN REDIPE 10 (9):515-525 - SEPTIEMBRE 2021 - ISSN 2256-1536 · 524 · https://doi.org/https://doi.org/10.1016/j. applthermaleng.2016.08.226

Olszewski, P. (2016). Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps. Applied Energy, 178, 527–539. https://doi.org/https://doi.org/10.1016/j. apenergy.2016.06.084

Ouchbel, T., Zouggar, S., Elhafyani, M. L., Seddik, M., Oukili, M., Aziz, A., & Kadda, F. Z. (2014). Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump. Energy Conversion and Management, 78, 976–984. https://doi.org/https://doi.org/10.1016/j. enconman.2013.08.063 Pei, J., Gan, X., Wang, W., Yuan, S., & Tang, Y. (2019). Multi-objective shape optimization on the inlet pipe of a vertical inline pump. Journal of Fluids Engineering, 141(6), 061108. https://doi.org/https://doi. org/10.1115/1.4043056

Pei, J., Yuan, S., Li, X., & Yuan, J. (2014). Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition. Journal of Hydrodynamics, 26(2), 257–263. https://doi.org/https://doi.org/10.1016/ S1001-6058(14)60029-9

Safikhani, H., Khalkhali, A., & Farajpoor, M. (2011). Pareto based multi-objective optimization of centrifugal pumps using CFD, neural networks and genetic algorithms. Engineering Applications of Computational Fluid Mechanics, 5(1), 37–48. https://doi.org/https://doi.org/10 .1080/19942060.2011.11015351

Shim, H.-S., Kim, K.-Y., & Choi, Y.-S. (2018). Three-objective optimization of a centrifugal pump to reduce flow recirculation and cavitation. Journal of Fluids Engineering, 140(9), 091202. https://doi.org/https://doi. org/10.1115/1.4039511

Siddique, M. H., Afzal, A., & Samad, A. (2018). Design optimization of the centrifugal pumps via low fidelity models. Mathematical Problems in Engineering, 2018. https://doi.org/ https://doi.org/10.1155/2018/3987594

Tan, L., Zhu, B., Wang, Y., Shuliang, C., & Gui, S. (2015). Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition. Engineering Computations, 32(6), 1549–1566. https://doi.org/ https://doi.org/10.1108/EC-05-2014- 0109

Tao, R., Xiao, R., Zhu, D., & Wang, F. (2018). Multi-objective optimization of double suction centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(6), 1108– 1117. https://doi.org/https://doi. org/10.1177/0954406217699020

Tong, Z., Cheng, Z., & Tong, S. (2019). Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions. Energies, 12(13), 2550. https://doi.org/https://doi.org/10.3390/ en12132550 INVESTIGACIONES CON CFD APLICADAS A BOMBAS CENTRÍFUGAS REVISTA BOLETÍN REDIPE 10 (9):515-525 - SEPTIEMBRE 2021 - ISSN 2256-1536 · 525 ·

Vergel Ortega, M y Diaz Gómez, C. (1998). La base teorica de la simulacion de eventos. revista Respuestas 3(1) Wang, W., Osman, M. K., Pei, J., Gan, X., & Yin, T. (2019). Artificial neural networks approach for a multi-objective cavitation optimization design in a double-suction centrifugal pump. Processes, 7(5), 246. https://doi.org/https://doi.org/10.3390/ pr7050246

Wang, Y., & Huo, X. (2018). Multiobjective optimization design and performance prediction of centrifugal pump based on orthogonal test. Advances in Materials Science and Engineering, 2018. https://doi.org/https://doi. org/10.1155/2018/6218178

Yanshu, Z., Shisha, Z., Dazhou, Z., & Cheng, W. (2012). Predicting performance of centrifugal pump by combining genetic algorithm with BP neural network. Mechanical Science and Technology for Aerospace Engineering, 31(8), 1274–1279.

Zhang, N., Yang, M., Gao, B., Li, Z., & Ni, D. (2016). Investigation of rotor-stator interaction and flow unsteadiness in a low specific speed centrifugal pump. Strojniški Vestnik-Journal of Mechanical Engineering, 62(1), 21–31. https://doi. org/10.5545/sv-jme.2015.2859

Zhou, L., Shi, W., Cao, W., & Yang, H. (2015). CFD investigation and PIV validation of flow field in a compact return diffuser under strong part-load conditions. Science China Technological Sciences, 58(3), 405–414. https://doi.org/https:// doi.org/10.1007/s11431-014-5743-6

Zhu, X., Li, G., Jiang, W., & Fu, L. (2016). Experimental and numerical investigation on application of half vane diffusers for centrifugal pump. International Communications in Heat and Mass Transfer, 79, 114–127. https://doi.org/https://doi.org/10.1016/j. icheatmasstransfer.2016.10.015