Investigations with CFD applied to centrifugal pumps
Main Article Content
Keywords
Centrifugal pump, CFD, performance, turbulence model, optimization
Abstract
In the present study a survey of CFD investigations applied to centrifugal pumps is carried out. The study covers the turbulence models generally used for the study of centrifugal pumps, the procedure normally used for the analysis of the optimization process and the advanced methodologies to identify the geometric parameters that affect the performance. From the documentary analysis it is shown that advances in CFD models and the availability of software have made possible the development of complex studies focused on centrifugal pumps. Turbulence models allow predicting the unsteady flow behavior in centrifugal pumps. Among the different models available, the k -e model stands out due to its prediction capability without requiring high computational power. The optimization process of a centrifugal pump involves geometrical changes involving variations in the vane, diffuser, impeller and pump diameters. The general procedure for optimization analysis applied to centrifugal pumps can be a basis for the construction of a faster and more systematic methodology.
References
Ayad, A. F., Abdalla, H. M., & Abo El Azm, A. S. (2015). Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance. International Conference on Aerospace Sciences and Aviation Technology, 16(AEROSPACE SCIENCES \& AVIATION TECHNOLOGY, ASAT-16- -May 26-28, 2015), 1–14. https://doi. org/10.21608/ASAT.2015.23015
Chen, H., He, J., & Liu, C. (2017). Design and experiment of the centrifugal pump impellers with twisted inlet vice blades. Journal of Hydrodynamics, Ser. B, 29(6), 1085–1088. https://doi. org/https://doi.org/10.1016/S1001- 6058(16)60822-3
Derakhshan, S., & Bashiri, M. (2018). Investigation of an efficient shape optimization procedure for centrifugal pump impeller using eagle strategy algorithm and ANN (case study: slurry flow). Structural and Multidisciplinary Optimization, 58(2), 459–473. https:// doi.org/https://doi.org/10.1007/ s00158-018-1897-3
Hou, H. C., Zhang, Y. X., Xu, C., Zhang, J. Y., & Li, Z. L. (2016). Effects of radial diffuser hydraulic design on a double-suction centrifugal pump. IOP Conference Series: Materials Science and Engineering, 129(1), 12017.
Houlin, L., Yong, W., Shouqi, Y., Minggao, T., & Kai, W. (2010). Effects of blade number on characteristics of centrifugal pumps. Chinese Journal of Mechanical Engineering-English Edition, 6, 742. https://doi.org/10.3901/ CJME.2010.06.742
Huang, R., Luo, X., Ji, B., Wang, P., Yu, A., Zhai, Z., & Zhou, J. (2015). Multi objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm. Science China Technological Sciences, 58(12), 2122–2130. https:// doi.org/https://doi.org/10.1007/s11431- 015-5865-5
Kaewnai, S., Chamaoot, M., & Wongwises, S. (2009). Predicting performance of radial flow type impeller of centrifugal pump using CFD. Journal of Mechanical Science and Technology, 23(6), 1620–1627. https://doi.org/https://doi. org/10.1007/s12206-008-1106-1
Liu, X., Li, H., Shi, X., & Fu, J. (2019). Application of biharmonic equation in impeller profile optimization design of an aero-centrifugal pump. Engineering Computations, 36(5), 1764–1795. https://doi.org/https://doi.org/10.1108/ EC-08-2018-0378
Meng, F., Zhang, H., Yang, F., Hou, X., Lei, B., Zhang, L., Wu, Y., Wang, J., & Shi, Z. (2017). Study of efficiency of a multistage centrifugal pump used in engine waste heat recovery application. Applied Thermal Engineering, 110, 779–786. INVESTIGACIONES CON CFD APLICADAS A BOMBAS CENTRÍFUGAS REVISTA BOLETÍN REDIPE 10 (9):515-525 - SEPTIEMBRE 2021 - ISSN 2256-1536 · 524 · https://doi.org/https://doi.org/10.1016/j. applthermaleng.2016.08.226
Olszewski, P. (2016). Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps. Applied Energy, 178, 527–539. https://doi.org/https://doi.org/10.1016/j. apenergy.2016.06.084
Ouchbel, T., Zouggar, S., Elhafyani, M. L., Seddik, M., Oukili, M., Aziz, A., & Kadda, F. Z. (2014). Power maximization of an asynchronous wind turbine with a variable speed feeding a centrifugal pump. Energy Conversion and Management, 78, 976–984. https://doi.org/https://doi.org/10.1016/j. enconman.2013.08.063 Pei, J., Gan, X., Wang, W., Yuan, S., & Tang, Y. (2019). Multi-objective shape optimization on the inlet pipe of a vertical inline pump. Journal of Fluids Engineering, 141(6), 061108. https://doi.org/https://doi. org/10.1115/1.4043056
Pei, J., Yuan, S., Li, X., & Yuan, J. (2014). Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition. Journal of Hydrodynamics, 26(2), 257–263. https://doi.org/https://doi.org/10.1016/ S1001-6058(14)60029-9
Safikhani, H., Khalkhali, A., & Farajpoor, M. (2011). Pareto based multi-objective optimization of centrifugal pumps using CFD, neural networks and genetic algorithms. Engineering Applications of Computational Fluid Mechanics, 5(1), 37–48. https://doi.org/https://doi.org/10 .1080/19942060.2011.11015351
Shim, H.-S., Kim, K.-Y., & Choi, Y.-S. (2018). Three-objective optimization of a centrifugal pump to reduce flow recirculation and cavitation. Journal of Fluids Engineering, 140(9), 091202. https://doi.org/https://doi. org/10.1115/1.4039511
Siddique, M. H., Afzal, A., & Samad, A. (2018). Design optimization of the centrifugal pumps via low fidelity models. Mathematical Problems in Engineering, 2018. https://doi.org/ https://doi.org/10.1155/2018/3987594
Tan, L., Zhu, B., Wang, Y., Shuliang, C., & Gui, S. (2015). Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition. Engineering Computations, 32(6), 1549–1566. https://doi.org/ https://doi.org/10.1108/EC-05-2014- 0109
Tao, R., Xiao, R., Zhu, D., & Wang, F. (2018). Multi-objective optimization of double suction centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(6), 1108– 1117. https://doi.org/https://doi. org/10.1177/0954406217699020
Tong, Z., Cheng, Z., & Tong, S. (2019). Preliminary design of multistage radial turbines based on rotor loss characteristics under variable operating conditions. Energies, 12(13), 2550. https://doi.org/https://doi.org/10.3390/ en12132550 INVESTIGACIONES CON CFD APLICADAS A BOMBAS CENTRÍFUGAS REVISTA BOLETÍN REDIPE 10 (9):515-525 - SEPTIEMBRE 2021 - ISSN 2256-1536 · 525 ·
Vergel Ortega, M y Diaz Gómez, C. (1998). La base teorica de la simulacion de eventos. revista Respuestas 3(1) Wang, W., Osman, M. K., Pei, J., Gan, X., & Yin, T. (2019). Artificial neural networks approach for a multi-objective cavitation optimization design in a double-suction centrifugal pump. Processes, 7(5), 246. https://doi.org/https://doi.org/10.3390/ pr7050246
Wang, Y., & Huo, X. (2018). Multiobjective optimization design and performance prediction of centrifugal pump based on orthogonal test. Advances in Materials Science and Engineering, 2018. https://doi.org/https://doi. org/10.1155/2018/6218178
Yanshu, Z., Shisha, Z., Dazhou, Z., & Cheng, W. (2012). Predicting performance of centrifugal pump by combining genetic algorithm with BP neural network. Mechanical Science and Technology for Aerospace Engineering, 31(8), 1274–1279.
Zhang, N., Yang, M., Gao, B., Li, Z., & Ni, D. (2016). Investigation of rotor-stator interaction and flow unsteadiness in a low specific speed centrifugal pump. Strojniški Vestnik-Journal of Mechanical Engineering, 62(1), 21–31. https://doi. org/10.5545/sv-jme.2015.2859
Zhou, L., Shi, W., Cao, W., & Yang, H. (2015). CFD investigation and PIV validation of flow field in a compact return diffuser under strong part-load conditions. Science China Technological Sciences, 58(3), 405–414. https://doi.org/https:// doi.org/10.1007/s11431-014-5743-6
Zhu, X., Li, G., Jiang, W., & Fu, L. (2016). Experimental and numerical investigation on application of half vane diffusers for centrifugal pump. International Communications in Heat and Mass Transfer, 79, 114–127. https://doi.org/https://doi.org/10.1016/j. icheatmasstransfer.2016.10.015