Las teorías no euclidianas y la filosofía de la ciencia como propuesta académica para comprender el funcionamiento del universo
##plugins.themes.bootstrap3.article.main##
Keywords
Euclides, Teoría no euclidiana, Filosofía de la ciencia, Geometría molecular, Pensamiento espacial
Resumen
Senior (2001) propone en su artículo relacionar el surgimiento de las de las Teorías no euclidianas y su impacto en la filosofía de la ciencia del siglo XX.
Es innegable la revolución científica que se produce a través de la contrastación del quinto postulado de Euclides, proceso llevado a cabo por varios científicos desde Saccheri hasta Riemann, que permitió a la ciencia progresar. Otra gran revolución científica fue la Einstein, quien, basado en las Teorías no euclidianas, expresa su Teoría de la relatividad, comprobando que el espacio y el tiempo son relativos y no son absolutos como lo estipulaba Newton. Finalmente, se hace transversal a las teorías o paradigmas científicos como la Teoría celular, la estructura de la molécula de ADN, la explicación del enlace químico y la estructura geométrica de las moléculas en tres dimensiones. Tales conjeturas han sido generadas con el fin de comprender el mundo y plantean una revisión a la forma de orientar las ciencias naturales en general y la química en particular. Por otro lado, se relacionan situaciones erróneas de la enseñanza–aprendizaje y evaluación en casos puntuales como la geometría molecular, a nivel de la representación geométrica de los componentes estructurantes de los seres vivos como la célula, tejidos, órganos y sistemas.
Referencias
https://www.scielo.org.co/pdf/difil/v10n15/v10n15a03.pdf. (29/10/2017).
De Lira, J. (2015). Karl Popper: controversias en filosofía de la ciencia. Recuperado en: http://www.uaa.mx/direcciones/dgdv/editorial/docs/ve_popper.pdf. (10/10/2017).
Guerrero, G. (2005). Teoría kantiana del espacio, geometría y experiencia. Universidad del Valle. Recuperado en:
bibliotecadigital.univalle.edu.co/bitstream/10893/1890/1/Art%20002.pdf. (24/10/2017).
Gutiérrez, S. (2010). János Bolyai: la revolución de la geometría no euclidiana. Recuperado en: https://revistasuma.es/IMG/pdf/63/107-112.pdf. (21/10/2017).
Kuhn, T. (2004). Estructura de las revoluciones científicas (8va. Ed.). México: Fondo de cultura económica. Recuperado en:
https://clasesparticularesenlima.wordpress.com/2015/05/26/la-estructura-de-las-revoluciones-cientificas-de-thomas-kuhn-en-pdf-descarga-gratuita/. (29/10/2017).
Martínez, R. y Rendón, L. (2012). La matemática, la física y la filosofía. Universidad Nacional. Bogotá. Colombia. Recuperado en:
http://www.scm.org.co/aplicaciones/revista/Articulos/1088.pdf. (27/10/2017).
Maza, J. (2013). Cosmología: Einstein, de Siter y Lemaître. Universidad de Chile. Recuperado en:
www.das.uchile.cl/~jose/eh2802_2014/2.11.cosmologia_2013.pdf. (30/10/2017).
Mosterín, J. (1982) Kant como filósofo de la ciencia. Recuperado en: http://revistes.uab.cat/enrahonar/article/view/v4-mosterin/910-pdf-es. (23/10/2017).
Pareja, D. (1993). Las mentiras detrás de la educación matemáticas. Grupo Editorial Norma. Recuperado en:
http://www.matematicasyfilosofiaenelaula.info/articulos/Las%20Mentiras%20detras%20de%20la%20Educacion%20Matematica.pdf. (29/10/2017).
Paroli, P. (2006). La intuición en el Análisis kantiano de la geometría. Recuperado en: serbal.pntic.mec.es/~cmunoz11/paroli47.pdf. (24/10/2017).
Pérez, A. (1999). Kuhn y el cambio científico. México: Fondo de cultura económica.
Popper, K. (1996). La lógica de la investigación científica. México: Red Editorial Iberoamericana.
Senior, J. (2001). El surgimiento de las teorías no euclidianas y su influencia en la filosofía de la ciencia del siglo XX. Recuperado en:
www.redalyc.org/pdf/414/41400505.pdf. (21/10/2017).
Sigarreta, J. Y Ruesgas, P. (2004). Evolución de la geometría desde la perspectiva histórica. Recuperado en:
https://www.emis.de/journals/BAMV/conten/vol11/jmsigarreta.pdf. (27/10/2017).
Ruíz, A. (1999). Geometrías no euclidianas. Breve historia de una gran revolución intelectual. Recuperado en:
http://www.centroedumatematica.com/aruiz/libros/Geometrias%20No%20euclidianas.pdf. (27/10/2017).
Tejada, D. (2003). Geometrías no euclidianas. Universidad Nacional de Colombia – sede Medellín. Recuperado en:
http://www.bdigital.unal.edu.co/7932/. (29/10/2017).
Toro, J. (2004). Experiencia, razón e intuición en el método de Spinoza. Universidad Nacional de Colombia. Recuperado en:
www.bdigital.unal.edu.co/19040/1/14988-45235-1-PB.pdf. (27/10/2017).
Vargas, J. (2010). Los errores de Kant. La crítica de Rosmini al idealismo trascendental. Recuperado en:
www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-22012010000100004. (24/10/2017).
Vittone, F. (2012). Introducción a las geometrías no euclidianas. Universidad Nacional de Rosario. Argentina. Recuperado en:
https://www.fceia.unr.edu.ar/~grosa/files/Vittone.pdf. (21/10/2017).