Determination of potential and actual evapotranspiration in watershed, using mathematical models

Main Article Content

Javier Alfonso Cárdenas Gutiérrez
Jose Leonardo Jacome Carrascal https://orcid.org/0000-0002-6022-6891
Mawency Vergel Ortega

Keywords

Evapotranspiration, Watershed, Thorwaite, Cenicafe, Turc, Countage

Abstract

In this research, it is analyzed the calculation of real evapotranspiration in hydrographic basins, it is taken as a reference the Aguablanca Creek, located in the municipality of Bochalema, North of Santander-Colombia, where it is evaluated the hydrologic balance of this basin from the determination of detailed calculations of four mathematical models, to later evaluate the hydrologic balance of this basin, with the purpose of being able to make a better administration of these resources, as well as the use of the soil, betting on the development of an ecologically sustainable society with low environmental impact. The values of potential and real evapotranspiration, according to the most optimal model ETP Thorwaite 874 mm/year ETR 43712 mm/year, Cenicafe 712.81 mm/year ETR 612.1 mm/year Turc ETR 884.83 mm/year quota ETR 825 mm/year.

Abstract 463 | PDF (Spanish) Downloads 249

References

[1] Bai, M., Shen, B., Song, X., Mo, S., Huang, L., & Quan, Q. (2019). Multi-Temporal Variabilities of Evapotranspiration Rates and Their Associations with Climate Change and Vegetation Greening in the Gan River Basin, China. Water, 11(12), 2568. doi:10.3390/w11122568
[2] Chu, R., Li, M., Islam, A., Fei, D., & Shen, S. (2019). Attribution analysis of actual and potential evapotranspiration changes based on the complementary relationship theory in the Huai River basin of eastern China. International Journal Of Climatology, 39(10), 4072-4090. doi: 10.1002/joc.6060
[3] Guan, X., Zhang, J., Yang, Q., & Wang, G. (2020). Changing characteristics and attribution analysis of potential evapotranspiration in the Huang–Huai–Hai River Basin, China. Meteorology And Atmospheric Physics. doi: 10.1007/s00703-020-00741-6
[4] Jian, D., Li, X., Sun, H., Tao, H., Jiang, T., Su, B., & Hartmann, H. (2018). Estimation of Actual Evapotranspiration by the Complementary Theory-Based Advection–Aridity Model in the Tarim River Basin, China. Journal of Hydrometeorology, 19(2), 289–303. doi:10.1175/jhm-d-16-0189.1
[5] Liu, W., & Liu, L. (2019). Analysis of Dry/Wet Variations in the Poyang Lake Basin Using Standardized Precipitation Evapotranspiration Index Based on Two Potential Evapotranspiration Algorithms. Water, 11(7), 1380. doi:10.3390/w11071380
[6] Liu, Z., Yao, Z., & Wang, R. (2019). Simulation and evaluation of actual evapotranspiration based on inverse hydrological modeling at a basin scale. CATENA, 180, 160–168. doi:10.1016/j.catena.2019.03.039
[7] Onyutha, C., Acayo, G., & Nyende, J. (2020). Analyses of Precipitation and Evapotranspiration Changes across the Lake Kyoga Basin in East Africa. Water, 12(4), 1134. doi:10.3390/w12041134
[8] Pan, Xu, Xuan, Gu, & Bai. (2019). Appropriateness of Potential Evapotranspiration Models for Climate Change Impact Analysis in Yarlung Zangbo River Basin, China. Atmosphere, 10(8), 453. doi:10.3390/atmos10080453
[9] Roche, J. W., Goulden, M. L., & Bales, R. C. (2018). Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology, e1978. doi:10.1002/eco.1978
[10] Wang, Y., Luo, Y., & Shafeeque, M. (2019). Using Gaussian Function to describe the seasonal courses of monthly precipitation and potential evapotranspiration across the Yellow River Basin, China. Journal of Hydrometeorology. doi:10.1175/jhm-d-19-0019.1
[11] Wu, X., & Meng, D. (2016). Analysis of temporal and spatial characteristics about surface actual Evapotranspiration in Haihe river basin based on MODIS. 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA). doi:10.1109/eorsa.2016.7552850
[12] Yadeta, D., Kebede, A., & Tessema, N. (2020). Potential evapotranspiration models evaluation, modelling, and projection under climate scenarios, Kesem sub-basin, Awash River basin, Ethiopia. Modeling Earth Systems and Environment. doi:10.1007/s40808-020-00831-9
[13] Zeng, R., & Cai, X. (2016). Climatic and terrestrial storage control on evapotranspiration temporal variability: Analysis of river basins around the world. Geophysical Research Letters, 43(1), 185–195. doi:10.1002/2015gl066470
[14] Zhang, D., Li, Z., Tian, Q., & Feng, Y. (2019). Drought Assessment in a Semi-Arid River Basin in China and its Sensitivity to Different Evapotranspiration Models. Water, 11(5), 1061. doi:10.3390/w11051061
[15] Zhang, Y., He, B., Guo, L., Liu, J., & Xie, X. (2019). The relative contributions of precipitation, evapotranspiration, and runoff to terrestrial water storage changes across 168 river basins. Journal of Hydrology, 579, 124194. doi:10.1016/j.jhydrol.2019.124194