Determinación de la evapotranspiración potencial y real en cuenca hidrográfica, utilizando modelos matemáticos

##plugins.themes.bootstrap3.article.main##

Javier Alfonso Cárdenas Gutiérrez
Jose Leonardo Jacome Carrascal https://orcid.org/0000-0002-6022-6891
Mawency Vergel Ortega

Keywords

Evapotranspiración, Cuenca, Thorwaite, Cenicafe, Turc, Conteo

Resumen

En esta investigación se analiza el cálculo de la evapotranspiración real en  cuencas hidrográficas,  se toma como referente la quebrada Aguablanca, ubicada en el municipio de Bochalema, Norte de Santander-Colombia, donde se evalúa el balance hidrológico de esta cuenca a partir de la determinación de cálculos detallados de cuatro modelos matemáticos, para posteriormente evaluar el balance hidrológico de esta cuenca, con el fin de poder hacer una mejor administración de estos recursos, así como del uso del suelo, apostando al desarrollo de una sociedad ecológicamente sostenible y de bajo impacto ambiental. Los valores de evapotranspiración potencial y real, según el modelo más optimo ETP Thorwaite 874 mm/año ETR 43712 mm/año, Cenicafe 712.81 mm/año ETR 612.1 mm/año Turc ETR 884.83 mm/año cuota ETR 825 mm/año.

Abstract 435 | PDF Downloads 229

Referencias

[1] Bai, M., Shen, B., Song, X., Mo, S., Huang, L., & Quan, Q. (2019). Multi-Temporal Variabilities of Evapotranspiration Rates and Their Associations with Climate Change and Vegetation Greening in the Gan River Basin, China. Water, 11(12), 2568. doi:10.3390/w11122568
[2] Chu, R., Li, M., Islam, A., Fei, D., & Shen, S. (2019). Attribution analysis of actual and potential evapotranspiration changes based on the complementary relationship theory in the Huai River basin of eastern China. International Journal Of Climatology, 39(10), 4072-4090. doi: 10.1002/joc.6060
[3] Guan, X., Zhang, J., Yang, Q., & Wang, G. (2020). Changing characteristics and attribution analysis of potential evapotranspiration in the Huang–Huai–Hai River Basin, China. Meteorology And Atmospheric Physics. doi: 10.1007/s00703-020-00741-6
[4] Jian, D., Li, X., Sun, H., Tao, H., Jiang, T., Su, B., & Hartmann, H. (2018). Estimation of Actual Evapotranspiration by the Complementary Theory-Based Advection–Aridity Model in the Tarim River Basin, China. Journal of Hydrometeorology, 19(2), 289–303. doi:10.1175/jhm-d-16-0189.1
[5] Liu, W., & Liu, L. (2019). Analysis of Dry/Wet Variations in the Poyang Lake Basin Using Standardized Precipitation Evapotranspiration Index Based on Two Potential Evapotranspiration Algorithms. Water, 11(7), 1380. doi:10.3390/w11071380
[6] Liu, Z., Yao, Z., & Wang, R. (2019). Simulation and evaluation of actual evapotranspiration based on inverse hydrological modeling at a basin scale. CATENA, 180, 160–168. doi:10.1016/j.catena.2019.03.039
[7] Onyutha, C., Acayo, G., & Nyende, J. (2020). Analyses of Precipitation and Evapotranspiration Changes across the Lake Kyoga Basin in East Africa. Water, 12(4), 1134. doi:10.3390/w12041134
[8] Pan, Xu, Xuan, Gu, & Bai. (2019). Appropriateness of Potential Evapotranspiration Models for Climate Change Impact Analysis in Yarlung Zangbo River Basin, China. Atmosphere, 10(8), 453. doi:10.3390/atmos10080453
[9] Roche, J. W., Goulden, M. L., & Bales, R. C. (2018). Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology, e1978. doi:10.1002/eco.1978
[10] Wang, Y., Luo, Y., & Shafeeque, M. (2019). Using Gaussian Function to describe the seasonal courses of monthly precipitation and potential evapotranspiration across the Yellow River Basin, China. Journal of Hydrometeorology. doi:10.1175/jhm-d-19-0019.1
[11] Wu, X., & Meng, D. (2016). Analysis of temporal and spatial characteristics about surface actual Evapotranspiration in Haihe river basin based on MODIS. 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA). doi:10.1109/eorsa.2016.7552850
[12] Yadeta, D., Kebede, A., & Tessema, N. (2020). Potential evapotranspiration models evaluation, modelling, and projection under climate scenarios, Kesem sub-basin, Awash River basin, Ethiopia. Modeling Earth Systems and Environment. doi:10.1007/s40808-020-00831-9
[13] Zeng, R., & Cai, X. (2016). Climatic and terrestrial storage control on evapotranspiration temporal variability: Analysis of river basins around the world. Geophysical Research Letters, 43(1), 185–195. doi:10.1002/2015gl066470
[14] Zhang, D., Li, Z., Tian, Q., & Feng, Y. (2019). Drought Assessment in a Semi-Arid River Basin in China and its Sensitivity to Different Evapotranspiration Models. Water, 11(5), 1061. doi:10.3390/w11051061
[15] Zhang, Y., He, B., Guo, L., Liu, J., & Xie, X. (2019). The relative contributions of precipitation, evapotranspiration, and runoff to terrestrial water storage changes across 168 river basins. Journal of Hydrology, 579, 124194. doi:10.1016/j.jhydrol.2019.124194