Estrategias meta-cognitivas y niveles de autonomía visual promovidos por un educador matemático en formación. descripción y ejemplificación de aplicación de un instrumento metodológico

##plugins.themes.bootstrap3.article.main##

Gustavo Adolfo Marmolejo Avenia
Oscar Francisco Muñoz
Raúl Prada Núñez

Keywords

Instrumento metodológico, Profesores en formación, Visualización, Planificación, Autonomía.

Resumen

La visualización es susceptible de desarrollo. La planificación, por su parte, es un sub-proceso meta-cognitivo de naturaleza regulativa que favorece el desarrollo de esta actividad cognitiva. El presente artículo expone un instrumento metodológico. Este permite caracterizar, por un lado, cómo los educadores en formación suscitan la planificación de las acciones visuales pertinentes a la resolución de tareas métricas, y, por otro lado, detectar el efecto que las decisiones adoptadas producen en la autonomía de los estudiantes. El instrumento de análisis se diseñó de forma mixta (inductiva y deductivamente) y consideró las formas de proceder de 18 educadores en formación en el marco de su experiencia de práctica profesional. Tres categorías de análisis lo conforman: Operaciones meta-cognitivas de planificación visual, Estrategias meta-cognitivas de control visual y Niveles de autonomía visual. A manera de ejemplo, se caracteriza cómo un educador en formación implementó una de las estrategias de planificación por él consideradas. Como conclusión se evidenció que el instrumento es una herramienta poderosa para identificar tanto los tipos de estrategias de planificación contempladas como las dificultades encontradas por los educadores al intentar incluirlas en su praxis educativa.

Abstract 383 | PDF Downloads 248

Referencias

Artzt, A., y Armour, E. (1992). Development of a Cognitive Metacognitive Framework for Protocol Analysis of Mathematical Problem Solving in Small Groups. Cognition and Instruction, 137-175.

Balachef, N., y Gaudin, N. (2010). Modeling student conceptions. The case of function. Issues in Mathematics Education, 183-211.

Bisquerra, R. (1989). Métodos de investigación educativa. Barcelona: Grupo editorial CEAC, SA.

Duval, R. (1998). Geometry from a cognitive point a view. Estrasburgo: C. Mammana and V. Villani (eds.), Perspectives on the Teaching of Geometry for the 21st Century, Kluwer Academic Publishers. Duval, R. (2003). Voir en mathématiques. Matemática eductiva. Aspectos de la investigación actual, 41-76.

Duval, R. (2004). Cómo hacer que los estudiantes entren en las representaciones geométricas. Cuatro entradas y una quinta. Madrid: chamorro Ed.

Duval, R. (2017). Semiosis y pensamiento humano. Registros semióticos y aprendizaje intelectuales (M. Vega Restrepo, Trad.), (2ª ed.). Cali, Colombia: Pgrama Editorial Univalle Flavell, J. (1976). Metacognitive aspects of problem solving. The nature of intelligence, 231-235.

García, A., y Santarelli, N. (2004). Los procesos metacognitivos en la resolución de problemas y su implementación en la práctica. Educación Matemática, 127- 141.

Holec, H. (1981). Autonomy and Foreign Language Learning. Oxford: Pergamon.

Kamii, C., y López, P. (1982). La autonomía como objetivo de la educación: implicaciones de la teoría de Piaget. Journal for the Study of Education and Development, 3-32.

Klimenco y Alvarez, (2009). Aprender cómo aprendo: la enseñanza de estartegias metacognitivas. Educación y Educadores, 12(2), 11-28

Lithner, J. (2004). Mathematical reasoning in calculus texbook exercises. Journal of Mathematical Behavior, 405- 427.

Manoli, P. y Jaume, S. (2001). La enseñanza de estrategias de resolución de problemas matemáticos en la ESO: un ejemplo concreto. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 19(2), 297-08,

Marmolejo, G-A. (2021). Función de control visual en el tratamiento del área de superficies planas. Un estudio comparativo de libros de texto colombianos y españoles. Gustavo Adolfo

Marmolejo (Ed). En Conversión, lecturabilidad icónica y función de control visual l(99-126) Editorial Universidad de Nariño. San Juan de Pasto (Colombia)

Marmolejo Vega y Galeano (2020). Reconfigurando figuras bidimensionales. revista espacios, 63 a 80 Marmolejo, G-A., Guzman, L.Y. y Insuasti, A.L. (2016). Introducción a las fracciones en textos escolares de educación básica ¿figuras representaciones estáticas o dinámicas? Revista científica, 23(1), 43- 56

Marmolejo, G. y González, M. (2013). Visualización en el área de regiones poligonales. Una metodología de análisis de textos escolares. Educación Matemática, 25(3), 61-102.

Marmolejo, G., y González, M. (2015). Control visual en la construcción del área de superficies planas en los textos escolares. Una metodología de análisis. Revista Latinoamericana de Investigación en Matemática Educativa., 301 - 328.

Marmolejo, G-A. y Mosquera, S. (2021). (2021). Razonamiento cuantitativo y demanda semiótico-cognitiva en las guías de orientación de las pruebas saber. Editorial Universidad de Nariño. San juan de Pasto (Colombia).

Marmolejo, G., y Vega, M. (2012). La visualización en las figuras geométricas. Importancia y complejidad de su aprendizaje. Educación Matemática, 7-32.

Marmolejo, G-A., Sánchez, N. y Londoño, S. (2017). Conocimiento visual de los educadores al promover el estudio de la relación perímetro-área. REIEC, 12(2), 18-28.

Marmolejo, G-A. y Insuasty, E. (2018). Una propuesta de enseñanza para el estudio de la relación perímetro-área. Revista sigma, 14(1), 13-30

Martínez, R. (2007). Concepción de aprendizaje y estrategias metacognitivas en estudiantes universitarios de psicología. Anales de Psicología, 7-16.

Mcneill, D. (1992). Hand and Mind: What gestures reveal about thought. Chicago: Chicago University Press. Mevarech, Z., y Fridkin, S. (2006). The effects of IMPROVE on mathematical knowledge, mathematical reasoning and metacognition. Metacognition and Learning, 85-97.

Meza, V. (2004). Characterizing practices associated with functions in middle school textbooks: An empirical approach. Educational Studies in Mathematics, 255-286.

Monereo, C., y Castelló, M. (1997). Las estrategias de aprendizaje. Cómo incorporarlas a la práctica educativa. Barcelona: Edebe.

Paz, H. (2011). ¿Cómo desarrollar la metacognición en la educación superior mediante la resolución de problemas? Ingeniería e Investigación, 213-223.

Rojas, T. (2006). Planificación cognitiva en la primera infancia: una revisión bibliográfica. Acta Colombiana de Psicología, 101-114.

Schneider, W., y Artelt, C. (2010). Metacognition and mathematics education. ZDM Mathematics Education, 149-161.

Schraw, G., Crippen, K., y Hartley, K. (2006). Promoting Self-Regulation in Science Education:. Research in Science Education, 111-139.

Villani, V. (1998). Perspectives on the teaching of geometry for the 21st Century (Discussion Document for an ICMI Study). En C. Mammana y V.

Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 337- 346). Dordrecht. Netherlands: Kluwer Academic Publishers

Villavicencio, L. (2004). El aprendizaje autónomo en la educación a distancia. primer congreso virtual latinoamericano de educación a distancia, 1-11.

Zimmerman, B., y Martínez , M. (1986). Development of a structured interview for assessing student use of self regulated learning strategies. American Educational Journal, 614-628